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Abstract

The dynamics of high area-to-mass ratio (HAMR) objects has been studied extensively since the discovery of this debris population in
near GEO orbits. A sound understanding of their nature, orbital evolution, and possible origin is critical for space situational awareness.
In this paper, a new averaged formulation of HAMR object orbit evolution that accounts for solar radiation pressure, Earth oblateness,
and lunisolar perturbations is explored. The first-order averaged model, explicitly given in terms of the Milankovitch orbital elements, is
several hundred times faster to numerically integrate than the non-averaged counterpart, and provides a very accurate description of the
long-term behavior. This model is derived and presented along with comparisons with explicit long-term numerical integrations of
HAMR objects in GEO. The dynamical configuration of the Earth–Moon–Sun system was found to have a significant resonance effect
with HAMR objects leading to complex evolutionary behavior. The properties of this resonant population may serve as important con-
straints for models of HAMR debris origin and evolution. A systematic structure associated with their distribution in inclination and
ascending node phase space is identified. Given that these objects are difficult to target and correlate, this has many implications for
the space surveillance community and will allow observers to implement better search strategies for this class of debris.
� 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The motion of high area-to-mass ratio (HAMR) objects
in high-Earth orbits has been studied extensively since the
discovery of this debris by Schildknecht and colleagues
(ca. 2004). The HAMR debris population is thought to
have origins in the geostationary (GEO) region, and many
of these objects are uncharacterized with apparent area-to-
mass ratios of up to 30 meters squared per kilogram (Schil-
dknecht et al., 2004; Liou and Weaver, 2005; Schildknecht,
2007). The orbits of HAMR objects are highly perturbed

from the combined effect of solar radiation pressure
(SRP), anomalies of the Earth gravitational field, and
third-body gravitational interactions induced by the Sun
and the Moon (Chao, 2006; Valk et al., 2008; Anselmo
and Pardini, 2010; Scheeres et al., 2011; Rosengren and
Scheeres, 2011). The evolution of individual orbits of
HAMR debris over a considerable time interval, taking
into account both short-period and long-period terms,
can be calculated by numerical integration of the precise
set of differential equations. This process leads to the con-
struction of high-precision ephemerides and the investiga-
tion of the empirical evolution of such objects, but not
necessarily to general insight into the dynamics of the prob-
lem. Numerical computations of this type have revealed
that the amplitudes of the short-term fluctuations in the
osculating orbital elements are, in general, quite small
when compared with the long-term variations. For this
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reason, and the necessity of considering the orbital
behavior of a large population of HAMR debris over many
thousands of revolutions, it seems reasonable to investigate
the equations that govern the long-term evolution of orbits.
Such equations can be derived by the theory of secular
perturbation.

The theory of secular perturbation, also referred to as
the theory of averaging, was introduced by Clairaut,
Lagrange, and Laplace over two centuries ago. In the clas-
sical Laplace–Lagrange theory, as in that of Gauss, Dela-
unay, Halphen, Poincaré-Lindstedt, von Zeipel, Brouwer,
and the Lie-transformation of Hori and Deprit, the goal
is to eliminate the short-period perturbation terms and
derive the equations that capture the secular evolution of
the system (Sanders et al., 2007). When the equations of
motion do not have a canonical form, short-period terms
can be eliminated systematically by means of the of the
Krylov–Bogoliubov–Mitropolski method of averaging.
This method, developed by Kyrloff and Bogoliuboff
(1947) in the analysis of nonlinear oscillations, and general-
ized by Bogoliubov and Mitropolski (1961), was first
applied to problems in celestial mechanics and satellite the-
ory in the early 1960s (Musen, 1960; Musen, 1961; Struble,
1961; Allan, 1962; Lidov, 1962). Application of this
method to astronomical problems provides a direct means
of obtaining the first-order secular equations, and leads to
equation which do not depend on expansions in either
eccentricity or inclination. The averaged equations can be
numerically integrated, with significantly reduced compu-
tational requirements, and often reveal the essential char-
acteristics of the exact solution in a more satisfactory
way than a numerical solution of the non-averaged
equations.

Liou and Weaver (2005) used PROP3D, a fast orbit
propagator based on the averaging principle that was
developed for NASA’s debris evolutionary models, to
investigate the HAMR debris problem. PROP3D accounts
for the perturbations from Earth gravity up to the fourth
zonal harmonic, low-order lunisolar gravitational interac-
tions, and SRP with consideration of the Earth shadow
effect. Through comparisons with a high-fidelity orbit inte-
grator, they showed that HAMR objects in GEO are dom-
inated by major perturbations, not those of higher order.
Chao (2006) performed long-term studies of the orbital
evolution of GEO objects with high area-to-mass ratios
through analytically averaged equations. Chao investigated
the secular effects of SRP on the eccentricity and argument
of perigee by averaging over the object’s orbital period.
The long-term motion of the orbit inclination and longi-
tude of the ascending node were studied though doubly-
averaged equations for the lunisolar attraction, ignoring
higher-order terms in eccentricity, and singly-averaged
equations for the SRP perturbation. The secular equations
of motion were written in terms of the classical orbital ele-
ments, which leads to the presence of small numerical divi-
sors–the eccentricity and the sine of the inclination.

We present a non-singular model of first-order averag-
ing, explicitly given in terms of the Milankovitch vectorial
elements, which accounts for solar radiation pressure, the
oblateness of the Earth’s gravitational figure, and lunisolar
perturbations. The secular equations hold rigorously for all
Keplerian orbits with nonzero angular momentum; they
are free of the singularities associated with zero eccentricity
and vanishing line of nodes. This paper is organized into
the following discussions. We first present the environment
and force models for each perturbation, and discuss any
underlying assumptions and approximations. We then
review the Milankovitch elements and give their perturba-
tion equations in Lagrangian form, assuming the perturb-
ing accelerations are expressible as gradients of a
disturbing function. After deriving the first-order averaged
equations for each perturbing force, we demonstrate their
validity by comparing numerical integrations of them to
integrations of the exact Newtonian equations. The extent
to which the qualitative properties of the orbit persist with
increasing area-to-mass is investigated. We then show how
the geometry of the Earth–Moon–Sun system, and in par-
ticular the regression of the lunar node, causes a resonance
effect with a particular class of HAMR objects, leading to
complex evolutionary behavior. The properties of this res-
onant population may serve as important constraints for
models of HAMR debris origin and evolution. We then
launch a range of HAMR objects, released in geostationary
orbit (equatorial, circular-synchronous) with area-to-mass
ratios from 0 up to 40 m2/kg, uniformly distributed in
lunar node, and predict the spatial distribution of the pop-
ulation. We identify a systematic structure associated with
their distribution in inclination and ascending node phase
space, which is similar to that of the uncontrolled GEO sat-
ellites. Finally, we discuss the implications of these results
for observing campaigns and our future research
directions.

2. Environment and force models

2.1. The Earth–Moon–Sun system

Any account of motion in the Earth–Moon–Sun systems
has to start with a description of the dynamical configura-
tion of this three-body problem. Perozzi et al. (1991), using
eclipse records, the JPL ephemeris, and results from
numerical integration of the three-body problem, showed
that the mean geometry of the Earth–Moon–Sun system
repeats itself closely after a period of time equal in length
to the classical eclipse prediction cycle known as the Saros.
That is, this dynamical system is moving in a nearly peri-
odic orbit. Saros means repetition, and indicates a period
of 223 synodic months (� 6585:3213 days), after which
the Sun has returned to the same place it occupied with
respect to the nodes of the Moon’s orbit when the cycle
began. While the motion of the Earth around the Sun
can, over time spans of interest, be considered Keplerian,
the Moon is incessantly subject to solar perturbations
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resulting in periodic and secular variations of its orbital ele-
ments (Roy, 2005). The semi-major axis, eccentricity, and
inclination are subject to periodic variations about their
mean values of 384,400 km, 0.0549, and 5�090, respectively.
The line of apses advances, making one revolution in about
8.85 years. The node of the Moon’s orbital plane (its inter-
section with the ecliptic) regresses in the ecliptic plane with
a sidereal period of 6798.3 days (about 18.61 years); the
node moving westward on the ecliptic at a rate of roughly
1� in 18.9 days. The regression of the lunar nodes is intrin-
sically related with the Saros cycle. This complexity of
lunar motion must be taken into account for long-term
studies of HAMR object dynamics.

To describe the motion of the Earth about the Sun, we
define a heliocentric orbit frame, ðÊe; Êe? ; ĤeÞ, in which Êe

is the unit vector pointing to the orbit perihelion, Êe? is the
unit vector in the heliocentric plane of motion and normal
to Êe, and the cross product of these two vectors defines the
orbit normal, specified as Ĥe, about which the Earth
revolves.1 With this formulation, the varying position vec-
tor between the Earth and the Sun is specified as de ¼ ded̂e

and split into a magnitude de and a direction d̂e, both of
which are functions of the Earth true anomaly fe

de ¼
aeð1� e2

eÞ
1þ ee cos fe

; ð1Þ

d̂e ¼ cos feÊe þ sin feÊe? ; ð2Þ

where ae and ee are the semi-major axis and eccentricity of
the Earth’s heliocentric orbit, respectively.

The Moon’s actual motion is very complex; high-preci-
sion lunar ephemerides are available through the Jet Pro-
pulsion Laboratory, which account for the relativistic n-
body equations of motion for the point-mass Sun, Moon,
planets, and major asteroids, perturbations on the orbit
of the Earth–Moon barycenter from the interaction of
the point-mass Sun with the figure, solid-body tides of both
the Earth and Moon, and observations of lunar laser rang-
ing (Folkner et al., 2009). Our purpose in this paper is to
adopt the simplest possible expressions useful for studying
the long-term evolution of HAMR debris orbits. These
expressions must reveal the qualitative regularities of
motion, and they must provide, with a certain degree of
accuracy, a way of obtaining quantitative predictions of
long-term changes. To that end, we assume that the Moon
is on an osculating elliptical orbit in which the lunar node
precesses clockwise in the ecliptic plane with a period of
about 18.61 years. Note that we neglect the rotation of
the lunar perigee as well as the periodic variations in the
Moon’s semi-major axis, eccentricity, and inclination. We
define a geocentric orbit frame, ðÊm; Êm? ; ĤmÞ, where Êm

is the unit vector pointing to the orbit perigee,
Êm? ¼ Ĥm � Êm, and Ĥm is the Moon’s angular momentum

unit vector, about which the Moon revolves. These vectors
are resolved using the Moon’s mean ecliptic orbital ele-
ments in which XmðtÞ ¼ Xm0

þ _Xmðt � t0Þ, where
_Xm ¼ �2p=P saros and P saros is the sidereal period of nodal
regression in seconds. The position vector from the Earth
to the Moon is then be specified as dm ¼ dmd̂m, where dm

and d̂m are given by Eqs. 1 and 2, respectively, using the
Moon’s orbit parameters.

2.2. Solar radiation pressure

Solar radiation pressure is the largest non-gravitational
perturbative force to affect the motion of HAMR objects in
high-Earth orbits, causing extreme variations in their orbi-
tal parameters over short time periods. Typical analysis of
long-term orbit dynamics models the SRP acceleration
using the cannonball model, which treats the object as a
sphere with constant optical properties (Valk et al., 2008;
Anselmo and Pardini, 2010; Scheeres et al., 2011). The total
momentum transfer from the incident solar photons is
modeled as insolation plus reflection, and the force gener-
ated is independent of the body’s attitude. Any force com-
ponent normal to the object-Sun line that results from an
aspherical shape or nonuniformly reflecting surface is
thereby neglected. Then the net acceleration will act in
the direction directly away from this line and have the gen-
eral form (Scheeres, 2012a)

asrp ¼ �ð1þ qÞðA=mÞPU
ðds � rÞ
j ds � rj3

ð3Þ

¼ �b
ðds � rÞ
j ds � rj3

; ð4Þ

where q is the reflectance, A=m is the appropriate cross-sec-
tional area-to-mass ratio in m2/kg, PU is the solar radiation
constant and is approximately equal to
1� 108 kg km3=s2=m2, and b ¼ ð1þ qÞðA=mÞPU. The vec-
tor from the Earth to the Sun is given by ds ¼ �de, and
the position vector of the orbiter relative to the Earth is
r. This solar radiation pressure model can be rewritten as
a disturbing function

Rsrp ¼ �b
1

j ds � r j ; ð5Þ

where asrp ¼ @Rsrp=@r. If the object is close to the Earth, or
r� ds, the disturbing function can be further simplified by
expanding 1= j ds � r j and keeping the first term that con-
tains the position vector r:

Rsrp ¼ �
b

d3
s

ds � r; ð6Þ

with the gradient giving a solar radiation pressure acceler-
ation independent of the object’s position relative to the
Earth:

asrp ¼ �
b

d2
s

d̂s: ð7Þ
1 These are the orientation-defining integrals of the two-body problem,

and can be specified using the classical orbital elements relative to an
inertial frame (Scheeres, 2012a).
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The effects of the Earth’s shadow are not taken into ac-
count; and as we are only considering distant Earth orbits,
we also neglect Earth-albedo radiation pressure.

For a given semi-major axis, a, reflectivity, and A=m
value, we define the SRP perturbation angle (first defined
by Mignard and Hénon (1984)) as

tan K ¼ 3b
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

llsaeð1� e2
eÞ

r
; ð8Þ

where l and ls are the gravitational parameters of the
Earth and the Sun, respectively. We note that as the SRP
perturbation becomes strong, K! p=2; and as it becomes
weak K! 0. The angle K can be used to rigorously char-
acterize the strength of the SRP perturbation acting on a
body as a function of its orbit, its non-gravitational param-
eter, and the orbit of the Earth about the Sun. As it com-
bines these quantities into a single parameter, which
completely defines the long-term SRP-only solution
(qq.v., Richter and Keller, 1995; Scheeres et al., 2011; Sche-
eres, 2012b), we find it efficacious to use as the fundamental
defining characteristic of HAMR objects.

Although the cannonball model captures the general
nature of SRP, it does not provide a precise prediction of
how an individual object will evolve. However, this simple
model is commonly used in the propagation of HAMR
debris orbits since there is no method to incorporate a
physically realistic SRP model with a lack of a priori infor-
mation (i.e., object geometry, attitude behavior, surface
properties, thermal characteristics, etc.). Even though the
cannonball model may not realistically represent the SRP
force acting on these objects, the fact that this model gives
rise to many complex dynamical behaviors necessitates a
deeper understanding of this basic model before exploring
these more complex models. Thus, in the current paper, we
will focus on the cannonball model as that will allow a
direct comparison with earlier analyses of HAMR debris
orbit dynamics (cf. Liou and Weaver, 2005; Chao, 2006;
Valk et al., 2008; Anselmo and Pardini, 2010).

2.3. Earth mass distribution

We consider the effects of the C20 and C22 terms of the har-
monic expansion of Earth’s gravitational potential, which
account for the polar and equatorial flattening of the Earth’s
figure. Inclusion of these predominant harmonics is sufficient
to capture the main effects of nonsphericity in the Earth’s
mass distribution at high-altitude orbits. The standard way
to represent the disturbing function of the second degree
and order gravity field perturbation is using a body-fixed
frame with latitude angle d measured from the equatorial
plane and longitude angle k measured in the equator from
the axis of minimum moment of inertia (Scheeres, 2012a)

R2 ¼ �
lC20

2r3
1� 3 sin2 d
� �

þ 3lC22

r3
cos2 d cos 2k; ð9Þ

where C20 ¼ �J 2R2
e is the dimensional oblateness gravity

field coefficient, Re is the mean equatorial radius of the

Earth, and C22 is the dimensional ellipticity gravity field
coefficient. We can state the disturbing function in a gen-
eral vector expression

R2 ¼ �
lC20

2r3
1� 3ðr̂ � p̂Þ2
h i

þ 3lC22

r3
ð̂r � ŝÞ2 � ð̂r � q̂Þ2
h i

;

ð10Þ
where we assume that the unit vectors p̂; q̂, and ŝ are
aligned with the Earth’s maximum, intermediate, and min-
imum axes of inertia. The perturbing acceleration is then

a2 ¼
3lC20

2r4
1� 5ðr̂ � p̂Þ2
h i

r̂þ 2ðr̂ � p̂Þp̂
n o

� 3lC22

r4
5 ðr̂ � ŝÞ2 � ðr̂ � q̂Þ2
h i

r̂� 2 ðr̂ � ŝÞŝ� ðr̂ � q̂Þq̂½ �
n o

:

ð11Þ

2.4. Lunisolar gravitational attraction

Also necessary to incorporate in this analysis is the per-
turbation of the Sun and Moon’s gravity on the motion of
the HAMR object. These can be modeled as third-body
perturbations, and their functional form can be simplified
by performing an appropriate expansion. Taking Earth
as the center of our dynamical system, the perturbation
acceleration from a body with gravitational parameter lp

is (Scheeres, 2012a)

ap ¼ �lp
r� dp

j r� dpj3
þ dp

j dpj3

" #
; ð12Þ

where dp is the position vector of the perturbing body rel-
ative to Earth. For use in perturbation analysis it is conve-
nient to recast this as a disturbing function

Rp ¼ lp
1

j r� dp j
� dp � r
j dpj3

" #
; ð13Þ

where ap ¼ @Rp=@r. As the orbiter’s distance from the
Earth is small compared to the distance between the Earth
and the third body, or r=dp � 1, the disturbing function
can be represented as an infinite series using the Legendre
expansion, resulting in Scheeres (2012a)

Rp ¼
lp

dp

X1
i¼0

r
dp

� �i

P i;0
r � dp

rdp

� �
� dp � r

d2
p

" #
: ð14Þ

Keeping only the first non-constant term, with the Legen-
dre polynomial P 2;0ðxÞ ¼ 1=2ð3x2 � 1Þ, yields

Rp ¼
lp

2d3
p

3ðr � d̂pÞ
2 � r2

h i
: ð15Þ

Thus, to lowest order, the gravitational attraction of the
Sun and the Moon can be represented as a quadratic form,
which is the fundamental approximation made in the Hill
problem. Under this approximation, the perturbing accel-
eration simplifies to
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ap ¼
lp

d3
p

3ðr � d̂pÞd̂p � r
h i

: ð16Þ

2.5. Non-averaged Equations of Motion

Combining the above force models, we can define the
equations of motion for a HAMR object in orbit about
the oblate Earth disturbed by solar radiation pressure
and lunisolar gravity. In an inertially fixed frame centered
at the Earth, they can be stated in relative form

€r ¼ @U
@r

; ð17Þ

UðrÞ ¼ l
r
þRsrpðrÞ þ R2ðrÞ þ RsðrÞ þ RmðrÞ; ð18Þ

where Rs and Rm are third-body disturbing functions for
the Sun and the Moon, respectively. Performing the partial
derivatives, we can state the problem in terms of the pertur-
bation accelerations as

€r ¼ � l
r3

rþ asrp þ a2 þ as þ am: ð19Þ

3. Averaged dynamics

We now introduce the concept of averaging as this
allows us to evaluate the secular effects of the perturbations
on our system. For averaging to be valid, we assume that
the perturbing forces are sufficiently small so that, over
one orbital period, the deviations of the true trajectory
from the Keplerian trajectory are relatively small. In this
case, oscillations in the orbital elements will average out
over reasonably small periods. We refer the reader to
Bogoliubov and Mitropolski (1961) for a theoretical dis-
cussion on the mathematical bases of averaging.

3.1. Milankovitch orbital elements

In his monumental work on the astronomical theory of
paleoclimates, Milutin Milankovitch (1879–1958) reformu-
lated the classical method of perturbation of elements using
the two vectorial integrals of the unperturbed two-body
problem–the angular momentum (areal) vector and the
Laplace vector (Milankovitch, 1941). The vectorial inte-
grals describe the spatial orientation, geometrical shape,
and size of the osculating Keplerian orbit, and, together
with the sixth scalar integral that represents the motion
in time, constitutes a complete set of orbital elements. Geo-
metrically, the angular momentum vector, H, points per-
pendicular to the instantaneous orbit plane and the
Laplace vector, b ¼ le, where e is the eccentricity vector,
points towards the instantaneous periapsis of the orbit.
At a more fundamental level, the vector H represents twice
the areal velocity of the planet, and hence expresses Kep-
ler’s Second Law in vectorial form; the vector b can be
interpreted as the equation for the hodograph of Keplerian
motion (i.e., the shape of Keplerian trajectories in velocity

or momentum space) (q.v., Battin, 1999). These elements
have not been widely used in celestial mechanics in the past
thirty years, and have recently been reformulated and
expounded on in Rosengren and Scheeres (submited for
publication).

The Milankovitch elements are particularly useful in
finding the first-order long-period and secular variations
by means of the Krylov–Bogoliubov–Mitropolski method
of averaging (qq.v., Musen, 1960; Musen, 1961; Allan,
1962). When the disturbing function is limited to its secular
part, in accordance with the method of averaging, the semi-
major axis does not undergo any secular changes. Since the
semi-major axis is secularly invariable, the angular momen-
tum vector can be scaled by

ffiffiffiffiffiffi
la
p

. For this vector, denoted
here as h, together with the eccentricity vector, e, the secu-
lar Milankovitch equations take a compact and symmetri-
cal form. We can write these vectors in terms of the
position, r, and velocity, v, in dyadic notation2 as

h ¼ 1ffiffiffiffiffiffi
la
p ~r � v; ð20Þ

e ¼ 1

l
~v � ~r � v� r

jrj : ð21Þ

The first-order averaged equations in Lagrangian form can
be stated as (Allan and Cook, 1964; Tremaine et al., 2009;
Rosengren and Scheeres, submited for publication)

_�h ¼ ~�h � @
�R	
@�h
þ ~�e � @

�R	
@�e

; ð22Þ

_�e ¼ ~�e � @
�R	
@�h
þ ~�h � @

�R	
@�e

; ð23Þ

where the over bar indicates the averaged value and
�R	 ¼ �Rð�h;�eÞ= ffiffiffiffiffiffi

la
p

. We note that the partials of �R	 are ta-
ken independently. The averaged disturbing function is de-
fined as

�Rð�h;�eÞ ¼ 1

2p

Z 2p

0

Rða;MÞdM ; ð24Þ

where a is an arbitrary set of orbital elements excluding the
mean anomaly, and �Rð�h;�eÞ is independent of the fast var-
iable M. Eqs. 22 and 23 admit two integrals �h � �e and
�h � �hþ �e � �e; physically meaningful solutions are restricted
to the four-dimensional manifold on which �h � �e ¼ 0 and
�h � �hþ �e � �e ¼ 1 (Tremaine et al., 2009).

Perturbation equations in terms of the Milankovitch ele-
ments in Gaussian form, that is, with the disturbing accel-
eration given explicitly, were used after their inception,
most notably by Musen and Allan. Musen (1960) used
these elements to study the effects of solar radiation pres-
sure on the long-term orbit evolution of the Vanguard I
satellite. Musen (1961) also developed secular equations
for third-body perturbations, which are valid for all eccen-

2 The notation ~a denotes the cross-product dyadic, defined such that
~a � b ¼ a � ~b ¼ a� b. See Rosengren and Scheeres, submited for publica-
tion for a synopsis of the basic notation and properties of dyadics.
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tricity and all inclination. The third-body disturbing func-
tion was truncated to the lowest-order term in the Legendre
expansion (i.e., Hill’s approximation), and averaged over
the periods of both the orbiter and the disturbing body.
Allan (1962) extended Musen’s work by incorporating
the parallactic term (third harmonic) into the disturbing
function expansion. Because these equations are not widely
known, and in order to draw attention to their applicability
and elegance, we give here an outline of their derivations
using the Lagrangian form of the secular Milankovitch
equations. We also derive the secular equations resulting
from Earth’s oblateness (J 2), and combine them with the
other perturbations to give a complete first-order averaged
model for the evolution of HAMR debris in GEO.

3.2. Averaged SRP dynamics

Using the Lagrange planetary equations, the disturbing
function can be averaged prior to application in this sys-
tem. Substituting Eq. 6 into Eq. 24, we find

�Rsrp ¼
1

2p

Z 2p

0

Rsrp dM ð25Þ

¼ � b

d2
s

d̂s � �r: ð26Þ

Thus, we only need to compute the average of the position
vector, a classically known result3

�r ¼ � 3

2
ae: ð27Þ

This leads to

�R	srp ¼
3

2

ffiffiffi
a
l

r
b

d2
s

d̂s � e: ð28Þ

Stated in this form, the scaled averaged disturbing function
can be substituted into the secular Milankovitch equations,
Eqs. 22 and 23, giving (cf. Richter and Keller, 1995)

_hsrp ¼ �
3

2

ffiffiffi
a
l

r
b

d2
s

~̂
ds � e; ð29Þ

_esrp ¼ �
3

2

ffiffiffi
a
l

r
b

d2
s

~̂
ds � h: ð30Þ

Richter and Keller (1995) and Scheeres (2012b) showed
that the averaged SRP equations, Eqs. 29 and 30, can be
solved in closed form, yielding an analytical solution for
the secular variation in the scaled angular momentum
and eccentricity vectors. The analytical solution is ex-
pressed in a frame that rotates with the planet-Sun line,
and solutions are periodic in fe= cos K, repeating every
Earth true anomaly 2p cos K. Thus, over one heliocentric
orbit the solution will advance 1= cos K times. As the per-
turbation grows large, and K approaches p=2, the solution

will repeat many times over one year. Conversely, as the
perturbation grows small the solution will repeat only once
every year.

In a previous study (q.v., Scheeres et al., 2011), we
applied the SRP-only averaged solution to the dynamics
of HAMR objects in GEO and GPS orbit regimes having
a variety of K values. One of the surprising aspects of the
theory is that the extremely simple, periodic behavior that
occurs relative to the Earth-Sun rotating frame becomes
quite complex and aperiodic in the Earth equatorial frame.
The presence of the complex oscillations in the inclination
and eccentricity vector, with short-period and long-period
terms, is just an artifact of transforming into the inertial
frame.

3.3. Averaged J 2 dynamics

Tesseral harmonics in the Earth’s gravitational potential
can also introduce long-term effects, especially if the mean
motion of the object is commensurable with the angular
velocity of Earth’s rotation. The most interesting case is
the influence of the ellipticity of Earth’s equator on the
motion of a geostationary object. This effect was studied
by Lemaı�tre et al. (2009) for HAMR objects in GEO space
who found that a resonance occurs from the C22 dynamics,
giving rise to chaotic behavior localized to a narrow range
of semi-major axis. The averaged effect of this perturbation
must be treated using a resonance theory. With mean
motion averaging, our formulation will be unable to
account for this subtle, and potentially important, aspect
of motion. Therefore, we only consider the averaged C20

dynamics in our system. The averaged C22 dynamics will
be studied in future work.

Performing the average over the second zonal harmonic
disturbing function gives

�R20 ¼ �
lC20

2

1

r3
� 3p̂ � r̂r̂

r3

� �
� p̂

" #
; ð31Þ

where the product of two unit vectors, ab, is called a dyad
and, in column and row vector notation is equivalent to the
outer product (i.e., ½a�½b�T ). From Musen (1961), we have

1

r3
¼ 1

a3h3
; ð32Þ

r̂r̂

r3

� �
¼ 1

2a3h3
U� ĥĥ
h i

; ð33Þ

where U is the identity dyadic and has the general property
U � a ¼ a �U ¼ a. Consequently,

�R	20 ¼
nC20

4a2h3
1� 3ðp̂ � ĥÞ2
h i

; ð34Þ

in which n ¼
ffiffiffiffiffiffiffiffiffiffi
l=a3

p
is the orbiter’s mean motion. Substi-

tuting �R	20 into Eqs. 22 and 23, the secular equations for
the oblateness gravity field perturbation can be written as

3 The bar ( ��) operator is omitted from the Milankovitch elements in
what follows because there is no ambiguity; i.e., all variables are averaged
variables.
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_h20 ¼
3nC20

2a2h5
ðp̂ � hÞ~̂p � h; ð35Þ

_e20 ¼
3nC20

4a2h5
1� 5

h2
ðp̂ � hÞ2

� �
~hþ 2ðp̂ � hÞ~̂p

	 

� e: ð36Þ

3.4. Averaged third-body dynamics

For the third-body perturbations, there are two time-
scales or frequencies over which the dynamical motion
occurs. These timescales are defined by the orbital rate, n,
and the motion of the perturbing body with its angular
rate, N p. If N p=n� 1, it is acceptable to hold Np constant
while averaging over n; in which case, the remaining system
has a time-varying term associated with Np.

3.4.1. Singly-averaged equations

The Hill-approximated third-body disturbing function,
Eq. 15, can be averaged over the orbiter’s unperturbed
two-body motion about the Earth as

�Rp ¼
lp

2d3
p

3d̂p � rr � d̂p � r2
h i

; ð37Þ

in which we note (Scheeres, 2012a)

r2 ¼ a2 1þ 3

2
e2

� �
; ð38Þ

rr ¼ 1

2
a2 5ee� hhþ ð1� e2ÞU
� �

: ð39Þ

Substituting Eqs. 38 and 39 into Eq. 37, and disregarding
the irrelevant constant term, we have

�R	p ¼
3lp

4nd3
p

5ðd̂p � eÞ
2 � ðd̂p � hÞ

2 � 2e2
h i

: ð40Þ

From the secular Milankovitch equations, Eqs. 22 and 23,
the singly-averaged third-body equations can be written in
the form (cf. Allan, 1962)

_�hp ¼
3lp

2nd3
p

d̂p � 5ee� hhð Þ � ~̂dp; ð41Þ

_�ep ¼
3lp

2nd3
p

d̂p � 5eh� heð Þ � ~̂dp � 2~h � e
h i

: ð42Þ

3.4.2. Doubly-averaged equations
If the perturbing body is assumed to be in an elliptic

orbit, and sufficient distance between the two timescales
exists, then another averaging may be performed. Since
averaging is a linear process, it can be performed over
the secular Milankovitch equations directly to yield

h
_¼
p ¼

1

2p

Z 2p

0

_�hp dMp ð43Þ

¼ �
3lp

2n
5e � d̂pd̂p

d3
p

 !
� ~e� h � d̂pd̂p

d3
p

 !
� ~h

24 35; ð44Þ

e
_¼
p ¼

1

2p

Z 2p

0

_�ep dMp ð45Þ

¼ �
3lp

2n
5e � d̂pd̂p

d3
p

 !
� ~h� h � d̂pd̂p

d3
p

 !
� ~eþ 1

d3
p

 !
2~h � e

24 35;
ð46Þ

where (=) denotes the double averaged value. The average
of these quantities are given by Eqs. 32 and 33. Conse-
quently, the doubly-averaged third-body dynamics for an
elliptically orbiting disturbing body become (cf. Musen,
1961)

h
_¼
p ¼ �

3lp

4na3
ph3

p

Ĥp � 5ee� hhð Þ � êHp; ð47Þ

e
_¼
p ¼ �

3lp

4na3
ph3

p

Ĥp � 5eh� heð Þ � êHp � 2~h � e
h i

: ð48Þ

where Ĥp is the angular momentum unit vector of the per-
turbing body.

3.5. Secular equations of motion

The secular evolution of the Milankovitch orbital ele-
ments in the presence of SRP, J 2 and lunisolar perturba-
tions can be stated as

_h ¼ _hsrp þ _h20 þ _hs þ _hm; ð49Þ
_e ¼ _esrp þ _e20 þ _es þ _em; ð50Þ

where the over bar has been dropped, the SRP dynamics
are given by Eqs. 29 and 30, and the C20 dynamics are given
by Eqs. 35 and 36. The lunisolar dynamics can either be
represented by the singly-averaged equations, Eqs. 41 and
42, or the doubly-averaged equations, Eqs. 47 and 48. In
this formulation, the motion of the disturbing bodies can
either be supplied from theory, i.e., the two-body solution,
or can be provided by an ephemeris.

Combining all of these perturbations leads to a highly-
nonlinear system, which does not appear integrable, but
such simplifications help to understand some qualitative
features of the system. Although the exact averaged solu-
tion is presumably inaccessible, the expressions given in
Eqs. 49 and 50 are several hundred times faster to numer-
ically integrate than their non-averaged Newtonian coun-
terparts. With these results it is possible to predict
accurately the long term orbital behavior of HAMR
objects, given the initial values of the orbital elements
and the initial geometry of the Earth–Moon–Sun system;
the latter being important for calculation of Moon-induced
perturbations.

A.J. Rosengren, D.J. Scheeres / Advances in Space Research 52 (2013) 1545–1560 1551



Author's personal copy

4. Long-term dynamics of HAMR objects

Numerical integration of the precise non-averaged equa-
tions of motion represents the most accurate means of cal-
culating the exact trajectory of an orbiting body in a given
time interval. Anselmo and Pardini have made several
numerical investigations of the HAMR debris problem,
mapping out the dynamics of these objects over long time-
spans with all relevant perturbations included. Their most
recent work presents a detailed analysis concerning the
long-term evolution of HAMR debris in high-Earth orbit
subject to SRP with Earth’s shadow effects, geopotential
harmonics up to degree and order eight, and third-body
gravitational interactions induced by the Sun and the
Moon (Anselmo and Pardini, 2010). Comparison of these
solutions with the results obtained from the averaged for-
mulas is a significantly reliable estimate of the accuracy
of the approximated equations. Such comparison permits
us to conclude about the applicability of the averaged
equations for considering the evolution of HAMR debris
orbits.

We restrict our attention to objects released in geosta-
tionary orbit (a � 42164:2 km) on 1950 January 01
12:00:00 UTC; therefore, e0 
 0 and h0 
 p̂ (Earth’s rota-
tion pole). To understand the main characteristics of
motion and to determine the extent to which the qualitative
properties of the orbit persist with increasing area-to-mass,
the dynamics were simulated using a reflectance value of
0.36, and area-to-mass ratios between 0 and 40 m2/kg.
For a given semi-major axis, reflectivity, and A=m value,
we compute the corresponding K angle (Eq. 8), which we
use to characterize the evolutionary behavior of HAMR
debris orbits. The SRP perturbation angles and corre-
sponding effective area-to-mass ratios are shown in
Table 1.

4.1. Newtonian non-averaged dynamics

For the non-averaged dynamics, we use the high-accuracy
Solar System ephemeris (DE421), provided by JPL, to calcu-
late the position vectors of the Sun and the Moon (Folkner

et al., 2009). The long-term orbit evolution of several HAMR
objects, obtained using numerical integrations of the Newto-
nian equations of motion (Eq. 19), are shown in Fig. 1. The
eccentricity and inclination evolution, over 100 years, shown
in Figs. 1(a) and 1(b), closely match the results obtained by
Anselmo and Pardini (2010).4 For the object with
K ¼ 12:60� (corresponding to ð1þ qÞA=m ¼ 20:4 m2/kg),
the eccentricity undergoes an approximately yearly oscilla-
tion with amplitude of about 0.4 and long-period modula-
tions of � 0:05. The inclination undergoes approximately
yearly oscillations that are superimposed on the long-term
drift, which has a varying maximum amplitude between
25� and 35� and a long-term oscillation period of about 22
years. As shown in Fig. 1(c), the evolution of the two-dimen-
sional eccentricity vector, e cos x cos X� cos i sin x½
sin X; cos x sin Xþ cos i sin x cos X�, is characterized by
both a yearly and long-term regression; the latter exhibiting
complex evolutionary behavior. The orbit pole, ĥ, precesses
clockwise, having the same characteristics as the inclination
oscillation (see Fig. 1(d)).

4.2. Averaged dynamics

Since our Newtonian non-averaged results compare
well, both quantitatively and qualitatively, with those of
Anselmo and Pardini (2010),5 they can be used as a logical
basis for assessing the validity of our averaged model. We
are particularly interested in distinguishing between cause
and effect and in identifying the precise origin of any per-
turbation experienced by the HAMR object. To that end,
we avoid using the precise JPL ephemeris, and instead
assume two-body dynamics for the Sun and the Moon,
for which the lunar node regresses in the ecliptic plane with
a sidereal period of � 18:61 years (see Section 2.1).

The evolution of several HAMR objects, obtained using
numerical integrations of the singly-averaged equations of
motion, are shown in Fig. 2. The eccentricity evolution in
Fig. 2(a) is shown over a shorter timescale to emphasize
the respective amplitudes of the yearly oscillations for each
object. The approximated averaged equations, using two-
body dynamics and accounting for the regression of the
Moon’s node, gives us nearly identical plots at this level
of resolution as the full Newtonian non-averaged simula-
tions. We do not use any special formalism in our integra-
tions to preserve the constraints on h and e,6 yet after 100
years, they are satisfied to over one part per billion.

With the Newtonian non-averaged formulation, the var-
ious perturbations are all lumped together and we obtain
no indication as to the form and nature of any of them.

Table 1
Maximum long-term inclination and minimum periapsis radius reached
over all 360 trajectories for each SRP perturbation angle. The corre-
sponding effective area-to-mass ratios are also listed. Recall that the Saros
resonance becomes important between K ¼ 10:5� and K ¼ 15:5�.

K [�] ð1þ qÞA=m [m2/kg] max i [�] min rp [Re]

0.85 1.36 15.40 6.4
4.26 6.8 19.79 5.6
8.47 13.6 28.56 4.6

12.60 20.4 39.64 3.7
13.81 22.44 48.04 3.3
16.59 27.2 41.21 2.9
20.43 34.0 43.88 2.2
24.08 40.8 44.28 1.5
27.54 47.6 48.03 1.0

4 Note that we used slightly different initial conditions and a different
release epoch for our simulations; the latter will change the initial
dynamical configuration of the Earth–Moon–Sun system.

5 In addition to our force model, they account for higher-order gravity
field perturbations and Earth shadow effects in their numerical
integrations.

6 Recall that e � h ¼ 0 and e � eþ h � h ¼ 1.
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However, our averaged formulation gives significant qual-
itative indications and allows us to understand many aspect
of HAMR debris motion. Concerning the eccentricity evo-
lution, solar radiation pressure acting alone induces sub-
yearly oscillations with period 2p cos K; the amplitude
increasing with increasing K. Inclusion of the C20 dynamics
causes only slight changes in the short-term oscillations,
but induces long-period small fluctuations in the maximum
amplitudes. The dynamical coupling between SRP and
oblateness becomes more pronounced with increasing K
(q.v., Rosengren and Scheeres, 2011). The addition of
third-body perturbations, primarily the attraction of the
Moon, causes a slight increase in the short-term ampli-
tudes, and gives rise to long-term aperiodic oscillations in
the maximum amplitudes. Regarding the inclination evolu-
tion, solar radiation pressure accounts for the sub-yearly
oscillations that ride on top of the longer-term secular drift,
and the reduction in the long-term oscillation periods with
increasing K (see Fig. 3). The addition of Earth oblateness
brings about a reduction in both the amplitude and period
of the long-term oscillations. Inclusion of lunisolar pertur-

bations causes a slight increase in the long-term amplitudes
and a decrease in the long-term oscillation periods, and for
certain values of K—most notably K ¼ 12:60� (correspond-
ing to ð1þ qÞA=m ¼ 20:4 m2/kg)—causes large fluctuations
(peak-to-peak changes) in the maximum amplitudes. These
fluctuations manifest themselves as a beating phenomenon
in the evolution of the two-dimensional angular momen-
tum unit vector, ½sin i sin X;� sin i cos X�. Note that for
lower values of K, this complex behavior is not observed,
as shown in Fig. 2(b). The origin of this phenomenon,
which also appears in the numerical results of Anselmo
and Pardini (2010), will be discussed in Section 4.3.

The limitations and domain of validity of the doubly-
averaged third-body equations (Eqs. 47 and 48), is dis-
cussed extensively in Rosengren and Scheeres (2012), and
the relevant figures will be omitted here. Note that in all
cases considered, the doubly-averaged equations predict
the qualitative nature of the orbits; however, the angular
momentum vector evolution becomes misaligned with the
singly-averaged results after several decades. For larger
SRP perturbation angles, corresponding to faster preces-

Fig. 1. Long-term orbit evolution (100 years) in the Earth-equatorial frame for different values of the SRP perturbation angle, as predicted by the full non-
averaged equations of motion, Eq. 19, using Eq. 5 for SRP, Eq. 11 for C20 and C22, and Eq. 12 for lunisolar perturbations. The position vectors of both the
Sun and the Moon were computed using the JPL ephemeris (DE421).
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sions of the angular momentum vector, this deviation
becomes more pronounced. For K ¼ 12:60�, the doubly-
averaged equations are able to capture the complex beating
phenomenon, but predict a faster precession causing a shift
in the inclination evolution. In our derivation of the dou-
bly-averaged equations, we assumed the Moon followed

a Keplerian ellipse about the Earth; however, as the
Moon’s node regresses in the ecliptic plane, this assump-
tion actually violates the averaging principle. As will
become apparent in the following section, a resonance the-
ory is needed in order to average out the Moon’s motion
for lunar third-body perturbations.

Fig. 2. Long-term orbit evolution in the Earth-equatorial frame for different values of the SRP perturbation angle, as predicted by the singly-averaged
equations of motion, Eqs. 49 and 50, using Eqs. 29 and 30 for SRP, Eqs. 35 and 36 for C20, and Eqs. 41 and 42 for lunisolar perturbations. The position
vectors of both the Sun and Moon were computed using two-body dynamics, accounting for lunar nodal regression.

Fig. 3. Accumulation of the effects on the long-term inclination evolution, as each perturbing force is added to the system.

1554 A.J. Rosengren, D.J. Scheeres / Advances in Space Research 52 (2013) 1545–1560



Author's personal copy

4.3. Saros secular resonance

The epoch date determines the initial geometry of the
Earth–Moon–Sun system, and thus the initial location of
the lunar ascending node. We found that when the nodal
rate of the perturbed system is commensurate with the
nodal rate of the Moon (i.e., the Saros), the perturbations
build up more effectively over long periods to produce sig-
nificant resonant effects on the orbit (Rosengren and Sche-
eres, 2012). Such resonances, which occur for a class of
HAMR objects that are not cleared out of orbit through
their eccentricity growth, gives rise to strongly changing
dynamics over longer time periods. This resonant behavior
explains the long-term beating phenomenon that occurs for
K ¼ 12:60� (see Fig. 2(b)). Its nodal period in the equato-
rial frame is close enough to the Saros (sidereal period of
lunar nodal regression) that there is a strong interaction
between the lunar effects and the overall precession rate.

Figs. 4–6 show the inclination and two-dimensional
angular momentum vector evolution in the Earth equato-
rial frame, for several HAMR objects propagated using
the same initial conditions, but varying the initial lunar
node. Varying the initial location of the Moon’s ascending
node over 2p is, in a sense, equivalent to varying the release

epoch within a Saros cycle. For K ¼ 13:81�, the nodal per-
iod in the equatorial frame is approximately equal to 18.61
years, thereby inducing a 1 : 1 resonance with the Saros.
The qualitative picture of the evolution changes drastically
based on this angle, which is indicative of resonance. Figs. 5
and 6 show the evolution of objects with nodal rates either
too slow or too fast to resonantly interact with the Saros.
Note that for these objects, their orbits will change quanti-
tatively based on the initial node angle, but the qualitative
evolution remains the same. The approximate range of
SRP perturbation angles for which resonance can be
important at GEO is between K ¼ 10:5� and K ¼ 15:5�

(corresponding to 16.93 m2/kg 6 ð1þ qÞA=m 625.33 m2/
kg). We refer the reader to Rosengren and Scheeres
(2012) for more details on the Saros resonance
phenomenon.

4.4. Global behavior of HAMR debris

4.4.1. The classical Laplace plane

Almost fifty years have elapsed since satellites were first
launched into geostationary orbit. The orbital dynamics of
uncontrolled GEO satellites is governed by the oblateness
of the Earth and third-body gravitational interactions

Fig. 4. Long-term orbit evolution in the Earth-equatorial frame of an object with K ¼ 13:81�, as a function of the initial lunar node. Note the significant
resonant effect caused by the Saros.
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induced by the Sun and the Moon. By itself, Earth’s oblate-
ness causes the pole of the orbital plane to precess around
the pole of Earth’s equator, the rate of rotation being pro-
portional to J 2ðR=aÞ2n (as can be seen from Eq. 35). Luni-
solar perturbations will have a similar effect, but the
precession will now take place about the poles of the orbi-
tal planes of the Moon and the Sun, respectively, at a rate
proportional to n2

p=n (see Eq. 47). The motion of the orbit
pole of the satellite is a combination of simultaneous pre-
cession about these three different axes, one of which, the
pole of the Moon’s orbit, regresses around the pole of
the ecliptic with a period of 18.61 years. The classical
Laplace plane (or Laplacian plane) is the mean reference
plane about whose axis the satellite’s orbit precesses. On
the Laplace place, the secular orbital evolution driven by
the combined effects of these perturbations is zero, so that
the orbits are “frozen.” Under the approximation that the
lunar orbit lies in the ecliptic, we can defined the Laplace
plane at GEO, which lies between the plane of the Earth’s
equator and that of the ecliptic and passes through their
intersection (i.e., the Vernal equinox), and which has an
inclination of about 7:5� with respect to Earth’s equator
(Allan and Cook, 1964).

The significance of the classical Laplace plane is that the
pole of an orbit inclined at a small angle to it will regress

around the pole of this plane at nearly constant rate and
inclination. This implies that the orbital planes of uncon-
trolled GEO satellites evolve in a systematic way; that is,
their inclinations and ascending nodes are highly corre-
lated. Shown in Fig. 7 is the long-term evolution of the
inclination and ascending node, in the Earth equatorial
frame, of initially geostationary satellites (note that SRP
causes only negligible effects for a typical satellite). These
inactive satellites precess at a nearly constant inclination
about the pole of the Laplace plane with a period of about
54 years (q.v., Schildknecht, 2007). The maximum values of
inclination occur at X ¼ 0� (i.e., the ascending node of the
Sun’s orbit) and the minimum values occur at X ¼ 180�

(i.e., the descending node).

4.4.2. The modified Laplace plane

The natural question arises as to whether the inclination
and ascending node for HAMR objects, which have area-
to-mass ratios hundreds or thousands of times greater than
that of a typical satellite and are thus strongly perturbed by
solar radiation pressure, is also systematic (strongly corre-
lated). It has been noted by Anselmo and Pardini (2010)
that an increase in area-to-mass ratio leads to a faster
and wider clockwise precession of the orbit pole. Tamayo
et al. (2013) argues, in the context of circumplanetary dust

Fig. 5. Long-term orbit evolution in the Earth-equatorial frame of an object with K ¼ 8:47�, as a function of the initial lunar node. Note that the Saros
resonance is not observable.
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particles, that solar radiation pressure modifies the classical
Laplace plane equilibrium. In fact, Allan and Cook (1967),
in considering the possibility of a geocentric contribution
to the zodiacal light, show that solar radiation pressure act-
ing alone causes a secular precession of the orbit around
the pole of the ecliptic. They find an approximate solution

to the modified Laplace plane and note that the orbital
plane of a given dust particle, for a given semi-major axis,
will regress around this plane. However, the validity of
their analysis is limited to dust particles that are only
weakly perturbed by solar radiation pressure; that is, par-
ticles which have low values of effective area-to-mass ratio.

To understand the spatial distribution of the HAMR
debris population, and to determine whether their ði;XÞ
pattern is systematic, we investigated a range of HAMR
objects, released in geostationary orbit with area-to-mass
ratios from 0 up to 40 m2/kg. We propagated over 80 dif-
ferent K values for 100 years, uniformly distributed in ini-
tial lunar node (360 different node values from 0 to 2p),
giving nearly 30,000 simulations. As evident from Figs. 4–
6, the initial location of the lunar node is an important
parameter as different behavior occurs depending on where
the object is relative to the Moon. Moreover, the initial
lunar node can be correlated with any epoch within a Saros
cycle, and thus may shed insight into the source of this
debris.

Fig. 8 shows the time-series, over 100 years, of inclina-
tion and right ascension of the ascending node in the
Earth-equatorial frame, for a range of SRP perturbation
angles, for two trajectories selected out of the 360 different
trajectories that are a function of the initial lunar node.
That is, we track the statistics over all 360 initial lunar

Fig. 6. Long-term orbit evolution in the Earth-equatorial frame of an object with K ¼ 16:59�, as a function of the initial lunar node. Note that the Saros
resonance is not observable.

Fig. 7. Scatter plot of the time-series, over 54 years, of inclination and
ascending node of initially geostationary objects subject to gravitational
perturbations, as predicted by the averaged model. The long-term motion
of the orbital plane is shown for four different initial positions of the lunar
node, i.e., four different launch dates.
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nodes, and show the evolution which gives the largest value
in maximum long-term inclination reached, and the evolu-
tion which gives the smallest value in maximum long-term
inclination reached. Note that the initial node angles that
produces these extreme cases will differ depending on the
K angle. The maximum long-term inclination reached for
each HAMR object is given in Table 1. For the non-Saros
resonant objects, the qualitative behavior is the same with
the maximum long-term inclination increasing with
increasing K. The 1 : 1 Saros resonance for K ¼ 13:81�

can be observed in Fig. 8(d), and leads to this object having
the largest maximum inclination across all K angles. In all
cases, the pattern associated with their distribution in incli-
nation and ascending node phase space is systematic (i.e.,
strongly correlated), which means that HAMR objects
evolve in predictable ways. The systematic structure of
the orbital planes for HAMR objects also implies that
the classical Laplace plane can be generalized to accommo-
date solar radiation pressure (q.v., Allan and Cook, 1967).
SRP will modify the classical Laplace plane, increasing its
inclination relative to the equator with increasing K; each
HAMR objects has its own modified Laplace plane for a
given semi-major axis and effective area-to-mass ratio.

The orbital lifetime of HAMR objects is determined by
their eccentricity growth and hence the decrease of their
orbit perigee radius. An eccentricity above 0.849 for a
semi-major axis corresponding to GEO would result in
an impact with the Earth. Note that an object occupying
this critical eccentricity orbit may not impact the Earth,
if the eccentricity changes rapidly enough. Table 1 lists
the lowest minimum periapsis reached across all 360 trajec-

tories for each SRP perturbation angle. For a value of
K ¼ 28:21� (ð1þ qÞA=m ¼ 49:0 m2/kg), all 360 trajectories
result in an eccentricity growth above 0.849 in less than a
year, which should lead to shorter lifetimes for this debris.
However, if the object does not go through perigee when
the critical eccentricity is reached, it could persist in orbit
for several decades. The results obtained are consistent
with those of Anselmo and Pardini (2010). These limits
may actually serve as a test for where such HAMR debris
originated, but a more complete understanding of how the
maximum eccentricity of a debris varies over time would
need to be made.

5. Discussion

5.1. Accuracy of averaged equations

For our averaged model, the disturbing function was
limited to the cannonball model of SRP without Earth sha-
dow effects, the dominant zonal harmonic in the harmonic
expansion of Earth’s gravitational potential, and the low-
est-order term in the Legendre expansion of the lunar
and solar disturbing functions (i.e., Hill’s approximation).
Under these approximations, the semi-major axis does
not undergo any secular changes and the problem reduces
to understanding the remaining four orbital elements,
e; i;X, and x, at a given semi-major axis. For geosynchro-
nous orbits, the tesseral harmonics in the geopotential cou-
pled with solar radiation pressure can introduce long-term
changes and even chaotic behavior in the semi-major axis
(Lemaı�tre et al., 2009). Hubaux et al. (2013) have demon-

Fig. 8. Scatter plot of the time-series, over 100 years, of inclination and right ascension of the ascending node, for two selected trajectories for each value
of K. The long-term motion of the orbital plane is shown for two different initial positions of the lunar node for each HAMR object, corresponding to the
respective extreme cases.
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strated that the Earth shadow effects, and even the precise
model of shadow, can drastically modify the chaotic zone.
However, these effects are localized to a narrow range of
semi-major axis (hundreds of meters) and will not signifi-
cantly affect the long-term orbit evolution. Indeed, even a
100 km change in semi-major axis will cause only a 0.1 per-
cent change in the SRP perturbation angle.

The dynamical behavior underlined by our averaged
model is in good agreement with earlier researchers (cf.
Liou and Weaver, 2005; Chao, 2006; Valk et al., 2008;
Anselmo and Pardini, 2010). We attribute any quantitative
differences between the singly-averaged and non-averaged
simulations to our use of the Hill approximation for the
lunar perturbing potential; namely, in the assumption that
r=dm � 1. Since geosynchronous orbits are relatively small
in comparison with that of the Earth and the Moon, only
the first non-constant term needs to be retained in the
Legendre expansion of the third-body disturbing function
to obtain a good representation of the object’s motion.
However, since HAMR objects are in highly-eccentric
GEO orbits, higher-order terms in the lunar disturbing
function expansion may become important. Lidov (1962)
showed that the parallactic term (third harmonic) can
cause the eccentricity to build up more rapidly if the orbit
is sufficiently large. In particular, the parallactic term
becomes effective when the object is at a distance of about
10 Earth radii. Thus, we find that for an initial orbit at
GEO semi-major axis, if the object has an eccentricity
greater than 0.5, which occurs for K > 15�, the parallactic
term may need to be considered. A recursive formulation
of the averaged third-body equations, such as that pre-
sented in Allan (1962), could be used to determine the
effects of the parallactic term on the long-term orbital
dynamics of HAMR objects; however, this will not be pur-
sued here.

5.2. Saros resonance phenomenon

The recognition of the Saros resonance raises many
questions of interest concerning the nature and evolution
of the HAMR debris population. This phenomenon actu-
ally appears in the numerical results of Anselmo and Par-
dini (2010), and is relevant for many of the observed
HAMR debris in near GEO orbits. Since the singly-aver-
aged results capture this subtle behavior, our averaged
model accounts for the full dynamics precisely, and can
be used for accurate long-term predictions. Further analy-
sis is needed to fully understand the resonance effect, and
will be pursued in future research.

5.3. Systematic structure in ði;XÞ phase space

Observers are interested in knowing what the best search
strategy is to maximize the detection efficiency of HAMR
objects for future surveys. From this point of view, the dis-
tribution in ði;XÞ phase space indicates exactly where their
surveys should concentrate. The systematic orientation of

the orbital planes indicates that an anti-solar direction sur-
vey should concentrate near the equator during the spring
and fall. During the summer and winter, the observers
should look at high latitudes for highly inclined objects.

The distribution in inclination and ascending node
phase space for HAMR objects subject to SRP, Earth
oblateness, and lunisolar third-body gravitational interac-
tions is the same systematic structure that the uncontrolled
GEO satellite population exhibits. For inactive satellites,
the oblateness of the Earth and the gravitational pull from
the Moon and the Sun force their orbital planes to precess
around the classical Laplace plane with a period of about
54 years (Allan and Cook, 1964; Schildknecht, 2007). Qual-
itatively, solar radiation pressure will have a precisely sim-
ilar effect as solar gravitational perturbations, causing the
orbit to precess around the pole of the ecliptic, the rate
of rotation being proportional to ð1� cos KÞ= cos K. This
can be inferred from the fact that the secular motion of
an orbiter subject only to SRP is periodic in a frame rotat-
ing with the Earth’s heliocentric true anomaly, and results
from the forced precession of this periodic solution relative
to an inertial frame (Scheeres, 2012b). Therefore, solar
radiation pressure will modify the classical Laplace plane,
increasing its equatorial inclination with increasing K (cf.
Allan and Cook, 1967).

It is currently believed that HAMR objects are sheets of
multilayer insulation detaching from payloads or buses of
objects in the GEO disposal orbit due to material degrada-
tion in the space environment (Liou and Weaver, 2005).
The modified Laplace plane will allow for the identification
of robust, long-term GEO disposal orbits. It also has many
implications for the planetary science community and may
lead to a better understanding of the origin and evolution
of natural satellites and binary asteroids, vide Tremaine
et al. (2009).

6. Conclusions

We presented a complete non-singular formulation of
first-order averaging explicitly given in terms of the Milan-
kovitch elements–the scaled angular momentum vector and
the eccentricity vector. This theory provides a unified
approach to the analysis and simulation of HAMR debris
over long timespans, and allows for the qualitative nature
of their evolution to be understood. We exposed the Saros
resonance as an important phenomena that has not been
identified previously, and which leads to complex evolu-
tionary behaviors when the perturbing forces act in con-
cert. This resonance may play a role in generating orbital
chaos, which is a topic of future research.

We have shown that we understand many aspect of
HAMR debris motion, and that by knowing the complete
qualitative picture of the evolution, we can use our model
to predict the population. We applied the non-singular the-
ory of first-order averaging toward an understanding of the
general nature and spatial distribution of the HAMR deb-
ris population. We identified a systematic structure associ-
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ated with their distribution in inclination and ascending
node phase space, and discussed how it can be used to
aid the space surveillance community in future search
campaigns.
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