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One topic of recent interest in the field of space situational awareness is the accurate and consistent representation

of an observed object’s uncertainty under nonlinear dynamics. This paper presents amethod of analytical nonlinear

propagation of uncertainty under two-bodydynamics. In particular, the probability density function over state space

and itsmean and covariancematrix are expressed analytically for all time via a special solution of the Fokker-Planck

equations for deterministic Hamiltonian systems. The state transition tensor concept is used to express the solution

flow of the dynamics. Some numerical examples, where a second-order state transition tensor is found to sufficiently

capture the nonlinear effects, are also discussed.

I. Introduction

S ITUATIONAL awareness of Earth-orbiting particles, such as
active satellites and space debris, is highly important for all

current and future space-faring nations. One topic of recent interest is
the accurate and consistent representation of an observed object’s
uncertainty under nonlinear dynamics [1,2]. Traditional orbit-
estimation methods rely on linear propagation of Gaussian
uncertainty [3]. It has been shown, however, that the Gaussian
assumption is an inconsistent description of the actual uncertainty
when the dynamics are highly unstable or when propagation times
become long [2,4–6]. Several methods have been proposed to
incorporate the nonlinearity of the dynamics of objects in orbit and to
express the non-Gaussianity of the resulting probability distribution,
including Gaussian sums, Monte Carlo simulations, and Edgeworth
filters [1,2,7]. The problem with the aforementioned approaches is
that they require significant computational power.

This paper is a survey of analytical nonlinear propagation of
uncertainty under two-body dynamics in the Poincaré orbit element
space. In particular, ways to express, analytically and for all time, the
probability density function (PDF) over Poincaré space and its mean
and covariance matrix are presented. This theory will allow one to,
for example, improve the accuracy and computational turnaround of
the correlation of optical tracks and initial orbit determination using
the admissible region concept [8–10]. First, the necessary
mathematical and physical ideas (section II) are introduced. For a
deterministic Hamiltonian dynamical system, as long as one has an
analytical description of the initial PDF and the solution to the
dynamics, an analytical description of the PDF for all time can be
obtained [4]. Given an analytical expression of the PDF, time
propagation is extremely efficient, as it is only a matter of changing

the time parameter. One way to express the solution of the dynamics
is via state transition tensors (STTs) [4,11]. Then, the preceding ideas
are applied to the orbiter problem (section III). A closed-form STT
solution for the two-body problem and the two-body problem with
perturbations from J2 gravity field harmonics in the Poincaré orbit
element space are presented. These dynamical systems are chosen for
consideration in the current paper because their solution flow is
analytical, but more complex systems can be accounted for. Finally,
some numerical examples are discussed (section IV). The mean and
covariance matrix of a PDF, as well as its 3-� ellipse, propagated
using STTs and those calculated via Monte Carlo methods are
compared. Also, the prediction error metric as defined by Horwood
et al. [2] is computed to determine how well the proposed method
maintains uncertainty consistency. Overall, this method succeeds in
accurately propagating uncertainty without excessive computational
burden.

II. Background

In this section, the concepts and theories that are used in this paper
are introduced. Mainly, the solutions to the Fokker-Planck equation
for a deterministic Hamiltonian (i.e., nondissipative) system and the
nonlinear mapping of both the system state and the moments/
cumulants of a PDF using the STT are discussed.

A. Solution of the Fokker-Planck Equation For a Deterministic
Hamiltonian System

Suppose the dynamics of some system is expressed as

_X� f�t;X� (1)

where X is the state vector, and f are the equations of motion [4].
Then, the solution of Eq. (1) is expressed as

X �t� � ��t;X0; t0� (2)

where X0 is the initial state at time t0. � must satisfy the following
conditions:

d�

dt
� f�t;��t;X0; t�� (3)

and

� �t0;X0; t0� �X0 (4)

The inverse solution flow  �t;X; t0� is defined as
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X 0 � �t;X; t0� (5)

which maps a current state back to an earlier state. Technically, for a
general solution to the flow, this flow can be found by interchanging
the initial and final states

 �t;X; t0� � ��t0;X; t� (6)

For a system that satisfies the Itô stochastic differential equation,
the time evolution of a PDF,p�X; t�, overX at time, t, is described by
the Fokker-Planck equation [7]

@p�X; t�
@t

��
Xn
i�1

@

@Xi

fp�X; t�f i�X; t�g

� 1

2

Xn
i�1

Xn
j�1

@2

@Xi@Xj

�p�X; t�fG�X; t�Q�t�GT�X; t�gij� (7)

where a single subscript indicates vector components, and a double
subscript indicates matrix components. Matrices G and Q
characterize the diffusion. For a deterministic Hamiltonian system,
a special solution of Eq. (7) exists, and it can be shown that the total
time derivative of a PDF is zero, independent of whether the potential
field is time invariant [4]. Thus, the PDF, p�X�t��, is a constant and
can be expressed in terms of the initial conditions, t0 and X0, as

p���t;X0; t0�� � p�X�t�� � p�X0� � p� �t;X; t0�� (8)

That is, if one has analytical expressions for the initial PDF and the
solution flow,��t;X0; t0�, for all t, then the analytical expression for
the PDF can be obtained for all t. Analytical expressions of the PDF
are useful because propagation is then only a matter of changing the
value for t. In particular, if the initial PDF is an n-dimensional
Gaussian distribution,

p�X0�� 1������������������������
�2��2nj�P0�j

p exp

�
1

2
�X0�M0�T �P0��1�X0�M0�

�
(9)

where the brackets indicate a matrix, superscript �1 indicates an
inverse, vertical lines represent the determinant, M0 is the initial
mean of the Gaussian, and �P0� is the initial covariance matrix. Then,
the PDF at time t is

p�X�t�� � 1������������������������
�2��2nj�P0�j

p exp

�
1

2
� �t;X; t0� �M0�T

� �P0��1� �t;X; t0� �M0�
�

(10)

because M0 and �P0� are initial parameters of the system and are
constants.

As a consequence of Eq. (8), the probability is an integral invariant

Z
B
p�X�t�� dX�

Z
B0

p�X0� dX0 (11)

where X 2 B, and B0 is the corresponding region for X0 �
 �t;X; t0� [12,13].

B. Prediction Error as an Uncertainty Consistency Metric

In a classical approach to statistical orbit determination, such as
the Kalman filter, uncertainty is modeled as a Gaussian distribution
and is propagated linearly about a reference trajectory [3]. The mean
of the state deviation, if assumed to be on the reference orbit, is zero
for all time, and the covariance matrix, �P��t�, is propagated with the
state transition matrix, ����t; t0�,

�P��t� � ����t; t0� 	 �P0� 	 ���T�t; t0� (12)

All higher-order moments and cumulants are zero for all time.
Although this approach is mathematically well-studied and easy to

implement, the assumption that the dynamics are linear has been
shown to break down even after one orbit for an object in low-Earth
orbit, depending on the coordinate system used [5,6]. The propagated
uncertainty is then no longer an “accurate reflection of the discrepancy
from truth exhibited by an estimated state” [2] due to the nonlinearity
of the dynamics [4]. That is, the uncertainty is inconsistent.

To distinguish the validity of various linear and nonlinear
uncertainty propagation techniques, Horwood, et al. [2] have
proposed a simple online uncertainty consistency metric called the
prediction error, PE�t�, which is defined as follows:

PE �t� �
Z
p1�X�t��p2�X�t�� dX (13)

where p1 and p2 are two arbitrary PDFs, and the integration is over
the entire state space. Again, from Eq. (8), PE�t� should be time-
independent assuming a deterministic Hamiltonian dynamical
system and consistent uncertainty propagation. In section IV.C, this
metric is used to quantify the consistency of uncertainty propagation
for the proposed method using solutions to the Fokker-Planck
equation versus the classical linear propagation.

C. Non-Linear Mapping of System Dynamics using State
Transition Tensors

One method of obtaining an analytical, nonlinear approximation
to the solution flow, ��t;X0; t0�, is to use a concept called the STT.
If one takes a Taylor series expansion of the solution function
Eq. (2) about some reference trajectory, X
, the state deviation,
x�X �X
, is found as

x i�t� �
Xm
p�1

1

p!
�i;k1...kp

x0
k1
. . .x0

kp
(14)

where the subscripts indicate the component of each tensor,m is the
order of the expansion, and� is the STTof order p [4,11]. Einstein’s
summation notation is used, and the comma in the subscript simply
denotes that the i-th component is not summed over. Note that the
STT is a generalization of the state transition matrix (STM) to any
arbitrary order. For m� 1, one finds the familiar result

x i�t� ��i;k1
x0
k1
) x�t� � ���x0 (15)

Given the solution flow, �, the STT can be solved for

�i;k1...kp
� @pXi

@X0
k1
. . . @X0

kp

����



(16)

where the 
 indicates that� is evaluated over the reference trajectory
X
. If X is not given as a function of X0, then the following
differential equation is solved:

_� i;k1...kp
�G�Ai;k1 ; . . . ; Ai;k1...kp ; �i;k1

; . . . ;�i;k1...kp
� (17)

where

Ai;k1...kp �
@pf i

@Xk1
. . .Xkp

����



(18)

is the local dynamics tensor (LDT), andG is a function described as
follows. Each term inG is a product of anLDTandSTTs so that 1) the
sum of the orders of the STTs add up to p and 2) the number of STTs
in the term is equal to the order of the LDT.

For instance, for p� 5, terms of the form
1) Ai;l1�l1;k1k2k3k4k5

h1i;
2) Ai;l1l2�l1;k1k2k3k4

�l2 ;k5
h5i, Ai;l1l2�l1;k1k2k3

�l2 ;k4k5
h10i;

3) Ai;l1l2l3�l1;k1�l2;k2�l3;k3k4k5 h10i, Ai;l1l2l3�l1;k1�l2;k2k3�l3;k4k5

h15i;
4) Ai;l1l2l3l4�l1;k1

�l2;k2
�l3;k3

�l4;k4k5
h10i; and

5) Ai;l1l2l3l4l5�l1;k1
�l2;k2

�l3 ;k3
�l4 ;k4

�l5 ;k5
h1i
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appear, where the number in h�i is the number for permutations of
k1; . . . ; kp that exist, e.g., for Ai;l1l2�l1;k1k2k3k4

�l2;k5

Ai;l1l2�l1;k2k3k4k5
�l2;k1

; Ai;l1l2�l1;k1k3k4k5
�l2 ;k2

; Ai;l1l2�l1 ;k1k2k4k5

��l2 ;k3
; Ai;l1l2�l1 ;k1k2k3k5

�l2 ;k4
; Ai;l1l2�l1 ;k1k2k3k4

�l2;k5
(19)

G is the sum of all possible forms and permutations mentioned in
the preceding list. Again, for n� 5,

G�Ai;k1 ; . . . ; Ai;k1k2k3k4k5 ; �i;k1
; . . . ;�i;k1k2k3k4k5

� � Ai;l1�l1;k1k2k3k4k5

� Ai;l1l2�l1;k2k3k4k5
�l2;k1

� Ai;l1l2�l1 ;k1k3k4k5
�l2 ;k2

� Ai;l1l2�l1;k1k2k4k5
�l2;k3

� Ai;l1l2�l1 ;k1k2k3k5
�l2 ;k4

� Ai;l1l2�l1;k1k2k3k4
�l2;k5

� Ai;l1l2�l1 ;k1k2k3
�l2;k4k5

� . . .

� Ai;l1l2l3�l1 ;k1
�l2 ;k2

�l3 ;k3k4k5
� . . .

� Ai;l1l2l3�l1 ;k1
�l2 ;k2k3

�l3;k4k5
� . . .

� Ai;l1l2l3l4�l1 ;k1
�l2;k2

�l3;k3
�l4;k4k5

� . . .

� Ai;l1l2l3l4l5�l1;k1
�l2;k2

�l3;k3
�l4 ;k4

�l5 ;k5
(20)

The initial values for the integration of Eq. (17) are�i;a � 1 for i� a
and 0 for all other entries.A andG are the generalization of the linear
dynamics matrix to any arbitrary order. Again, when m� 1, one
finds the familiar result

_� i;k1
� Ai;l1�l1 ;k1

) � _�� � �A���� (21)

D. Non-Linear Mapping of the Mean and Covariance Matrix
of the PDF

In some cases, it is more useful to obtain an analytical
approximation to the mean, M�m�X
, and covariance matrix,
�P�, of the PDF,p�X�t��, rather than the PDF itself. Given some initial
state deviation, x0, at time, t0,

m i�t� �
Xm
p�1

1

p!
�i;k1...kp

E�x0
k1
. . .x0

kp
� (22)

�P�ij�t� �
�Xm
p�1

Xm
q�1

1

p!q!
�i;k1...kp

�j;l1...lq
E�x0

k1
. . .x0

kp
x0
l1
. . .x0

lq
�
�

�mi�t�mj�t� (23)

where m is the order of the expansion of the dynamics, and E is the
expected value operator as defined in Park and Scheeres [4]

E�f�x�� �
Z
1
f�x�p�x�t�� dx (24)

Up to an 2m-order moment of the initial PDF is required to propagate
the covariancematrix, where an n-th-order moment, �i1...in , is defined
in Horwood [1] and McCullaugh [14] as

�i1...in � E�xi1 . . . xin � (25)

Thus, even for a fourth-order dynamics expansion, to propagate the
covariancematrix, one requires up to an eighth-ordermoment, which
for a six-dimensional state space, is composed of 68 � 106 terms.
Memory burden may be reduced by exploiting the fact that the
moment is a symmetric tensor. Another useful property to speed up
computation is as follows. Also define an n-th-order cumulant,
�i1 ;...;in , as

�i1;...;in � E��xi1 �mi1
� . . . �xin �min

�� (26)

Then, the n-th-order moment can be expressed in terms of cumulants
of order up to n

�i1...in �H��i1 ; . . . ; �i1 ;...;in� (27)

where H is a function defined similar to the function G of the
differential equations of the STT. That is, each term inH is a product
of the cumulants such that the sumof their orders add up to n.H is the
sum of all possible forms and permutations of such terms. For an
initial Gaussian distribution, many terms in H drop out as all
cumulants of order 3 and greater are 0. In fact, for such a case, ann-th-
order moment can be expressed entirely in terms of the mean and
covariance matrix. Despite this simplification, to propagate such a
higher-order moment still requires high-rank STTs, which act as a
computational block to describing a PDF in terms of its moments. It
must be emphasized that, with this formulation, it is not necessary to
compute these higher-order moments to determine the PDF at some
future time. Rather, computation of these moments is restricted to
situations in which they convey some specific meaning or have some
specific use, such as initialization of an orbit determination
algorithm.

III. Method

Motion of satellites in Earth orbit are particularly amenable to
having their solution described through analytic or semi-analytic
techniques. Evenwhen stronger nongravitational perturbations, such
as solar radiation pressure and atmospheric drag, are encountered,
these perturbations generally have deterministic components that are
substantially larger than their time-varying stochastic components,
meaning that they can be modeled either numerically or, in some
cases, analytically. These facts open the door to the use and
application of analytical or semi-analytical techniques to describe the
motion of a satellite, even accounting for uncertainty in model
parameters, so long as they do not contain strong dynamical
stochastic variations. In particular, if an approximate technique is
found for describing the dynamics of a satellite over time, such a
solution can be applied to a range of important questions related to
the dynamical propagation of an object’s PDF.

One such question is the propagation of range/range-rate
uncertainties associated with an optical track of an Earth-orbiting
object (i.e., the admissible region) [8,9] Multiple admissible regions
may be mapped to a common epoch and combined by means of
Bayes’ theorem to correlate optical tracks and obtain an initial orbit
estimate [10]. Currently, this mapping is done by dividing up the
admissible region into smaller subsets and propagating them linearly.
With a nonlinear propagation technique, better accuracy and faster
computational turnaround are expected because one can robustly
propagate larger subregions.

To this end, in this section, the STTs for two-body dynamics and
two-body dynamics with J2 gravity field perturbations are explicitly
derived. Although it has been indicated in the preceding section how
this approach can be applied to general and fully perturbed
dynamical systems, in the current paper, it is applied only to systems
with analytical solution flows in order to simplify the math
considerably. Thus, the secular J2 effects were chosen just as an
example; it is possible to consider higher-order harmonics via
methods by Brouwer[15], for instance.

A. Computation of n-th-Order STTs For Two-Body Dynamics

In two-body dynamics, the solution flow, ��t;X0; t0�, is given
analytically

L�t� � L0 l�t� � l0 � �2=�L0�3�t� t0� G�t� �G0

g�t� � g0 H�t� �H0 h�t� � h0 (28)

where � is the standard gravitational parameter and X�t� �
�L�t�; l�t�;G�t�; g�t�;H�t�; h�t�� are the Poincaré orbit elements
[16]. The Poincaré orbit elements are the nonsingular canonical
counterpart to the equinoctial orbit elements. Theirmain advantage is
that the variables can be naturally grouped into coordinate-momenta
symplectic pairs. Furthermore, they are defined and nonsingular even
for circular and zero-inclination orbits. With respect to the classical
orbital elements
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L� �������
�a
p

l��� !�M

G ��g tan�!��� g�
������������������������������������
2L�1 �

�������������
1 � e2
p

�
q

cos�!���

H��h tan� h�
���������������������������������������������
2L

�������������
1 � e2
p

�1 � cos i�
q

cos� (29)

wherea is the semimajor axis, e is the eccentricity, i is the inclination,
� is the right acsension of the ascending node, ! is the argument of
periapsis, and M is the mean anomaly. The inverse transformation,
 �t;X; t0�, is

L0�t� � L l0�t� � l� �2=L3�t0 � t�
G0�t� �G g0�t� � g

H0�t� � H h0�t� � h (30)

From Eq. (28),� is expected to be very sparse, as derivatives higher
than and including second-order for all variables except l are 0

�i;k1...kp �

8<
:
���1�p�2�p� 2�!�t=2!�=��L0�p�3� i� 2 and k1 � k2 � . . .� kp � 1

1 p� 1 and k1 � i
0 elsewhere

(31)

where �t� t � t0 is the time duration of the propagation. Similarly, the STT � of order p corresponding to the inverse flow is simply

�i;k1...kp
�

8<
:
���1�p�2�p� 2�!���t�=2!�=��L�p�3� i� 2 and k1 � k2 � . . .� kp � 1

1 p� 1 and k1 � i
0 elsewhere

(32)

B. Computation of n-th-Order STTs For Two-Body
Dynamics+Averaged J2 Perturbations

The effects of the averaged (or secular) J2 gravity field
perturbations are now added to the preceding two-body STT. In
classical orbital elements, the results are well known, as presented in
Vallado [16],

_asec � 0 _�sec ��
3n0r2EJ2
2�p0�2 cos i0 _esec � 0

_!sec �
3n0r2EJ2
4�p0�2 �4 � 5sin2i0� _isec � 0

_M0
sec �

�3n0rEJ2
�������������������
1 � �e0�2

p
4�p0�2 �3sin2i0 � 2� (33)

where n0 �
�����������������
�=�a0�3

p
is the mean motion, rE is the radius of the

Earth, p� a0�1 � �e0�2� is the semiparameter, andM0 is the mean
anomaly at epoch. The superscripts “0” are to emphasize that the
preceding rates are all constant given initial conditions. Therefore,

a�t� � a0 ��t� ��0 � _�sec�t e�t� � e0

!�t� � !0 � _!sec�t i�t� � i0

M�t� �M0 � �n0 � _M0
sec��t (34)

These relationships must be translated to Poincaré orbit elements. To
do so, theDelaunay orbit elements, �L; l;G; g;H; h�, are introduced.
With respect to the classical orbit elements, they are defined by
Vallado [16] as follows:

L� �������
�a
p

l�M

G� L
�������������
1 � e2
p

g� !
H �G cos i h�� (35)

and with respect to the Poincaré orbit elements

L� L l� l� arctan�G=g�

G� L �G2 � g2

2
g� arctan�H=h� � arctan�G=g�

H � L �G2 � g2 �H2 � h2

2
h�� arctan�H=h� (36)

For just this section, the state expressed in Delaunay elements is
explicitly denoted as DX�t�, in Poincaré elements as PX�t�, and their
initial states as DX0 and PX0, respectively. The goal in this section,
then, is to find PX�t� as a function of PX0. Equation (34) is
transformed into Delaunay orbit elements, presented by Maruskin
et al. [8] as

L�t��L0 l�t�� l0�
�
�3�4r2EJ2f�G0�2 � 3�H0�2g

4�L0�4�G0�5 � �2

�L0�3
�
�t

G�t��G0 g�t�� g0�
�
�3�4r2EJ2
4�L0�3�G0�4�

15�4r2EJ2�H0�2
4�L0�3�G0�6

�
�t

H�t��H0 h�t�� h0 � 3�4r2EJ2H
0

2�L0�3�G0�5 �t (37)

At this point, substitute Eq. (37) into the inverse relationship of
Eq. (36)

L� L l� l� g� h

G ��g tan�h� g� g�
��������������������
2�L � G�

p
cos�h� g�

H��h tan�h� h�
���������������������
2�G �H�

p
cos�h� (38)

and further express DX0 in terms of PX0 via Eq. (36) to obtain PX�t�
as a function of PX0. Then, calculating the STTs is, albeit tedious,
algebraic work.

Aswill be seen in section IV.A, the averaged perturbation due to J2
is dynamically slow enough compared with the two-body
acceleration such that a first-order approximation (i.e., STM) of the
perturbing dynamics is often sufficient to consistently propagate
uncertainty. In such a case, a simpler way to compute the STM is to
use the chain rule of differentiation

@PX�t�
@PX0

�
�
@PX�t�
@DX�t�

�
	
�
@DX�t�
@DX0

�
	
�
@DX0

@PX0

�
(39)

The first Jacobian matrix is a direct consequence of Eq. (38), the
second matrix of Eq. (37), and the third of Eq. (36). The resulting
STM does not contain any singularities; refer to appendix A for
details. Again, for the higher-order STTs, it is assumed that
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contributions from the averaged J2 accelerations can be ignored;
simply use the two-body solution as in Eq. (31).

IV. Results

In this section, results from C++ and MATLAB implementations
of the theory discussed so far are presented. Unless otherwise stated,
length units for all examples are in Earth radii, and all times are in
units in hours.

A. Propagation of the 3-� Ellipse

Here, a demonstration of how the 3-� ellipse of an initial Gaussian
distribution propagates under two-body dynamics and J2 gravity
field effects is shown. Results from the STTmethod andMonte Carlo
simulations are compared.

1. Two-body Dynamics

For this example, the classical and Poincaré orbital elements of the
truth orbit is given as follows:

a� 1:09437; e� i��� !�M� 0

) L� 4:6679 l�G � g�H� h� 0 (40)

The orbit period is 1.6121 hrs. For this analysis, only the �L-�l
subspace is considered, where � denotes state deviation from the
reference because only l dynamically evolves in the two-body
problem, and its rate is a function of L. The initial Gaussian
uncertainty is zero-mean, and two cases 1 and 2 of initial covariance
matrices are considered

�case 1� �P� � �2L �Ll

�Ll �2l

� �
� 4:4723 � 10�5 0

0 3:0461 � 10�8

� �

(41)

�case 2� �P� � 0:06243 0

0 3:0461 � 10�8

� �
(42)

The corresponding 1-� uncertainty in the semimajor axis direction is
20 km for case 1 and 745 km for case 2. Both cases 1 and 2
correspond to a 0.01 	 uncertainty in the mean longitude. Although
case 2 is unrealistic, it will be used to show the robustness of the
proposed method as well as to provide numerical stability in section
iv.B. For the Monte Carlo simulation, 106 points distributed to be

consistent with the initial uncertainty are generated and propagated
using the complete two-body dynamics as in Eq. (28). For the STT
propagation, 103 points are taken on the initial 3-� ellipse and
propagated using the approximate two-body dynamics as in Eq. (31).
Figure 1 is a representation of these initial distributions.

Figures 2 and 3 shows the results of the propagation for case 1.
FromEq. (8), the propagated 3-� ellipses are expected to still enclose
a large number of the propagatedMonteCarlo sample points. Indeed,
as the order of the STTused increases, the uncertaintymap converges
to the Monte Carlo solution. The 3-� ellipse propagated with first-
order dynamics encloses a small portion of the Monte Carlo points,
whereas those propagated with higher-order STTs continue to
enclose a majority. By about second-order, the STTapproximation is
close enough to the full dynamics. Also, the nonlinearity grows as the
propagation time is made longer, as expected. Figure 3 is a
representation of the Monte Carlo results and the propagated 3-�
ellipses after 100 orbital periods or about 161 hrs. The second-order
and higher STTs continue to be sufficient approximations to the
complete two-body dynamics even after such long propagation
times.

Figure 4 shows the results of the propagation for case 2. Even for
such an extreme initial distribution with faster dynamics, the STT
propagation, particularly above third-order, continues to retain
uncertainty consistency after
161 hrs:. It is also more clear for this
case how the expansion of the dynamics converges upon the true
dynamics as one includes higher-order effects.

2. Averaged J2 Perturbations

For this example, the classical and Poincaré orbital elements of the
truth orbit is given as follows:

a� 1:09437; e� 0:1; i� �=6
�� �=4; !� �=3; M� �=2 (43)

) L� 4:6679; l� 3:4034; G ��0:20895
g��0:055989; H��0:78882; h� 0:78882 (44)

The orbit period is still 1.6121 hrs. The analysismust be conducted in
the full six-dimensional state space now, because all Poincaré
elements except L are functions of time. The initial Gaussian
uncertainty is defined in the classical orbit element space andmapped
into the Poincaré space. Themean is zero and the covariancematrix is

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
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δ
0

-1 -0.5 0 0.5 1
-8

-6

-4
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4

6

8
x 10

-4
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δ
0

Fig. 1 Initial Gaussian distribution in the �L0-�l0 plane (sampled with the gray points) with the corresponding 3-� ellipse (dark curve) for cases 1 (left)
and 2 (right).
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Fig. 2 TheGaussian distribution propagated for five (top left), 10 (top right), and 20 (bottom) orbit periods using various propagationmethods for case
1. The �L-�lplane is rotated so that the axes of the plot correspond to the principal axis directions of the linearly propagated ellipse. The second-order and
higher curves are nearly identical. Points from the Monte Carlo run (labeled “Monte Carlo”) represent the complete nonlinear dynamics. The lines
(labeled “n order”) represent how the edges of the initial 3-� ellipse propagate with n-th-order STTs.
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Fig. 3 The Gaussian distribution propagated for 100 orbital periods using various propagation methods. The figure on the right is a zoom up near the
origin.
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�P� � diag��2a; �2e ; �2i ; �2�; �2!; �2M� (45)

� diag�9:8328 � 10�6; 2:5 � 10�5; 3:0462 � 10�6; 3:0462 � 10�6;

3:0462 � 10�6; 3:0462 � 10�8� (46)

where diag represents a diagonal matrix with the entries on the
diagonal. This value corresponds to a 1-� uncertainty of 20 km in a;
0.005 in e; 0.1 	 in i, �, and !; and 0.01 	 in M. Figure 5 is a
representation of this initial distribution in Poincaré space.

Figure 6 shows the results of the propagation. To highlight the
effects on the uncertainties due to only the averaged J2 term, the
point-mass gravity term is omitted from the dynamics. For the
Monte Carlo simulation, 104 points are distributed to be consistent
with the initial uncertainty are generated and propagated using the
complete averaged J2 dynamics. For the STT propagation, 3:2 � 106

points are taken on the initial 3-� hyper-ellipsoid and propagated
using the approximate averaged J2 dynamics up to first-order. The
dynamics due to the J2 gravity field harmonics are slow enough so
that, even after 20 orbit periods (
32 hrs), a linear propagation of the
uncertainty is consistent. Therefore, oftentimes for the problem of
two-body dynamics+averaged J2 perturbations, it is necessary to
include second-order and higher expansions of only the point-mass
gravity term. This is indeed the case in Fig. 7; when the two-body
dynamics are included via STTs up to second-order, theMonte Carlo
points remain included in the propagated 3-� hyper-ellipsoid.

B. Comparison of the Mean and Covariance Matrix

Here, results of the mean and covariance matrix propagated using
STTs and those computed by a Monte Carlo sampling of the
uncertainty are compared. Note that for the former, the results are
strictly analytical in that no sampling was required; refer to Eq. (22)
and (23). Only two-body dynamics are considered for this example.
The truth trajectory is the same as Eq. (40), and an initial zero-mean
Gaussian distribution is assumed. Solely due to limitations of the
random number generator in MATLAB, only the covariance matrix
for case 2, or Eq. (42), is considered. For theMonte Carlo results, the
mean and covariance matrices from 100 Monte Carlo runs are
averaged, with each run consisting of 106 sample points. Table 1
compares the propagated mean after 5, 10, 20, and 100 orbits, and
Table 2, the covariance matrix.

The mean changes only in the l-direction for Monte Carlo and
high-order STT propagation, which is expected, as two-body
dynamics influences only the mean longitude. Similarly, the
covariance matrix changes only for the variance of l and the
covariance between L and l. The error in the mean and covariance
matrix becomes smaller as the order of propagation increases, as
expected, but two interesting points are noted. First, the value of the
mean is equal when using either second-order or third-order
dynamics. This is because, from Eq. (22), the difference between the
two orders are the terms involving the initial third-order moment
of the PDF. Now, if assuming an initial Gaussian distribution,
Eq. (27) for the third-order moment, as presented by Park and
Scheeres [4], is
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Fig. 4 The Gaussian distribution propagated for five (top left), 10 (top right), 20 (bottom left), and 100 orbit periods (bottom right) using various
propagation methods for case 2. The second-order and higher curves are nearly identical. The figure for 100 orbit periods has been rotated as in Fig. 2.
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�i1i2i3 � �i1�i2�i3 � ��i1�i2;i3 � �i2�i1i3 � �i3�i1 ;i2� (47)

But zero initial mean (i.e., first-order cumulant) was also assumed, so
�i1i2i3 � 0, and the third-order does not contribute to the polynomial
expansion. In fact, any odd-order expansion of the dynamics greater
than or equal to order 3will result in the same propagatedmean as the
even-order expansion of one less order.

Second, the relative error of the mean, variance, and covariance
remain almost constant as the propagation time is increased. This
does not imply, however, that the PDF remains consistent for all time
even for low-order STTs, as is demonstrated in section IV.A.
Consider first the mean. From Eq. (14) and (31), the state deviation,

�~l, in the l-direction at time, t, found from STTs can be written as

�~l�t� � ��l;L�L
0 ��l;l�l

0� � 1

2
�l;LL��L0�2 � . . . (48)

� �l0 � 3�L0��4�2�t��L0� � 6�L0��5�2�t��L0�2 � . . . (49)

where �L0 and �l0 are the initial state deviations. Factoring out all of
the terms with �t,

�~l�t� � �l0 � �l̂�t (50)

�l̂ is constant in time. Next, from the complete two-body dynamics,
the deviation �l is

�l�t� � �l0 � �2f�L0��3 � �L0

��3g�t (51)

where the asterisk denotes the reference orbit. Therefore, the absolute
error between the mean calculated usingMonte Carlo runs and using
STTs is

E��l�t�� � E��~l�t�� � E��l�t� � �~l�t��

� E��2f�L0��3 � �L0

��3g � �l̂��t (52)

which grows proportionallywith propagation time. The relative error
is then

E��l�t�� � E��~l�t��
E��l�t��

� E��2f�L0��3 � �L0

��3g � �l̂��t

E��l0 � �2f�L0��3 � �L0

��3g�t�

(53)

But, initially zero-mean, so E��l0� � 0, and denoting S �
�2f�L0��3 � �L0


��3g constant in time,

E��l�t�� � E��~l�t��
E��l�t��

� �E�S� � E��l̂���t
E��l0� � E�S��t � 1 � E��l̂�

E�S� (54)

which does not depend on propagation time, as the results indicate.

E��l̂� and E�S� can both be determined a priori; thus, it is possible to
estimate the amount of relative error the mean of a PDF will incur at
an arbitrary order of the dynamics simply given the initial reference
state and information regarding the initial probability distribution.

Next, for the variance �2l ,

�2l � E���l � ��l�2� � E��l2� � ��l
2 (55)
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Fig. 5 Initial Gaussian distribution (sampled with the darker points) projected onto the �L0-�l0 (top left), �G0-�g0 (top right), and �H0-�h0 (bottom)
subspaces with the corresponding 3-� hyper-ellipsoid (sampled with lighter points).
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where the bar indicates mean. Now, for the complete two-body
dynamics,

E��l2� � ��l0�2 � 2�l0�2

�L0

�3

�t� �4

�L0

�6

�t2 � 2�l0�2E��L0��3��t

� 2�4

�L0

�3
E��L0��3��t2 � �4E��L0��6��t2 (56)

��l2 � ��l0�2 � 2�l0�2

�L0

�3

�t� �4

�L0

�6

�t2 � 2�l0�2E��L0��3��t

� 2�4

�L0

�3
E��L0��3��t2 � �4�E��L0��3��2�t2 (57)

Therefore,

�2l � �4fE��L0��6� � �E��L0��3��g�t2 � �4E�K��t2 (58)

Next, for the approximate dynamics from the STTs,

E��~l2� � ��l0�2 � 2�l0E��l̂��t� E��l̂2��t2 (59)

�E��~l��2 � ��l0�2 � 2�l0E��l̂��t� �E��l̂��2�t2 (60)

Thus,

~� 2
l � fE��l̂

2� � �E��l̂��2g�t2 � E�K̂��t2 (61)

The relative error is
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Fig. 6 The Gaussian distribution propagated for 20 orbital periods and projected onto the �L-�l (top left), �G-�g (top right), and �H-�h (bottom)
subspaces. Monte Carlo results in darker points, and STT propagation results in lighter points.
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Fig. 7 The Gaussian distribution propagated for 20 orbital periods
using a second-order expansion of the two-body dynamics+a first-order
expansion of the averaged perturbation due to J2. The distribution is
projected onto the �L-�l subspace, then rotated so that the axes of theplot
correspond to the principal axis directions of the propagated covariance
matrix. Monte Carlo results in darker points, and STT propagation
results in lighter points.
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�2l � ~�2l
�2l

� 1 � E�K̂�
�4E�K� (62)

which, again, is independent of the propagation time.
Finally, for the covariance, �lL,

�lL � E���l � ��l���L � � �L�� � E��l�L� � ��l� �L (63)

~� lL � E���~l� E��~l����L � � �L�� � E��~l�L� � E��~l�� �L (64)

But �L� �L0, so E��l�L� � E��l�L0�, and � �L� � �L0 � 0 from the
zero initial mean assumption. Next, from Eq. (50) and (51),

E��l�L0� � E��L0��l0 � S�t�� � E��L0�l0� � E��L0S��t (65)

E��~l�L0� � E��L0��l0 � �l̂�t�� � E��L0�l0� � E��L0�l̂��t (66)

where both E��L0�l̂� and E��L0S� are constants in time. In addition,
recall that for this particular example, the initial covariance is 0 (i.e.,
off-diagonals of the covariance matrix is 0), so E��L0�l0� � 0. As a
consequence, the relative error is

�lL � ~�lL

�lL

� 1 � E��L
0�l̂�

E��L0S� (67)

which is independent of the propagation time.

C. Conservation of the Prediction Error

Here, a comparison is conducted of how well the uncertainty
consistency metric Eq. (13) is conserved when 1) the proposed
approach of propagating the PDFs with the solution to the Fokker-
Planck Eq. (8) for deterministic Hamiltonian systems is
implemented, and 2) the classical approach of propagating only the
first two cumulants linearly along a reference trajectory with the state
transition matrix Eq. (12) is implemented. Recall from section II.A
that the morePE�t� changes with propagation time, the less accurate
the representation of the uncertainty becomes. Of the two truth orbits
to be considered, the initial state of the first (object 1) is Eq. (40), and
the second (object 2) is given as

a� 1:10064; e� i��� !�M� 0) L� 4:6812

l�G � g�H� h� 0 (68)

The same two initial Gaussian distributions as in section IV.A are
assumed for the uncertainty of both orbits to define PDFs, p1�X0�
and p2�X0�, as zero-mean and covariance matrices given in Eq. (41)
and (42) (cases 1 and 2, respectively). Only two-body dynamics are
considered for this example.

To compute PE�t�: 1) Fokker-Planck:
a) Propagate initial PDFs with forward flow, ��t;X0; t0�;
b) Sample PDFs and propagate each point back to time, t0, with

either the complete inverse flow,  �t;X; t0�, or its corresponding
STT, �;

c) Evaluate the PDF at each X0 and assign this value to X; and
d) Numerically integrate p1p2 over state space X.
2) Linear:
a) Propagate the mean and covariance matrices of the initial PDFs

with the STM;
b) Sample PDFs and evaluate it at each sample point; and
c) Numerically integrate p1p2 over state space X.
Figure 8 shows the evolution of PE�t� over 20 orbit periods of

object 1 for bothmethods, and Table 3 is a summary ofPE�t� after 20
orbit periods. As expected,PE�t� is best conserved formethod 1with
complete inverse dynamics, followed by that with the higher-order
STT dynamics. Also, for case 1, the solution from method 1 with
first-order STTs and those from method 2 are nearly equivalent, and
their uncertainty consistency is considerably worse than all of the
other methods. With the increased uncertainty in case 2, the results
from method 1 with first-order STTs and method 2, although no
longer equivalent after 20 orbits, both begin to diverge from the initial
value in a concave-down sense after about five orbits. On the other
hand, this behavior is not observed for PDFs propagated using
method 2 with second-order dynamics and higher. These results
quantify the robustness of the proposed method of uncertainty
propagation that was mentioned in section IV.A.

Again, linear propagation of uncertainty becomes inconsistent
with the actual probability distribution even after a couple of orbits.
Furthermore, the performance improvement diminishes for
propagation via the Fokker-Planck solution as the order of the
inverse STT dynamics is increased. These results suggest that
second-order dynamics may provide sufficient uncertainty

Table 1 The mean ��l of the deviation of Poincaré element, l, for different numerical and analytical propagation
methods. “� [%]” indicates relative error with respect to the Monte Carlo results in percentages

Monte Carlo First order Second order Third order Fourth order

��l ��l � [%] ��l � [%] ��l � [%] ��l � [%]

5 orbits 0.5521 0 100 0.5401 2.176 0.5401 2.176 0.5517 0.074
10 orbits 1.1042 0 100 1.0802 2.176 1.0802 2.176 1.1034 0.074
20 orbits 2.2084 0 100 2.1604 2.176 2.1604 2.176 2.2068 0.074
100 orbits 11.042 0 100 10.802 2.176 10.802 2.176 11.034 0.074

Table 2 Elements from the covariance matrix for different numerical and analytical propagation methods

Monte Carlo First order Third order

�lL �2l �lL � [%] �2l � [%] �lL � [%] �2l � [%]
5 orbits �1:2975 27.626 �1:2605 2.851 25.451 7.871 �1:2966 0.068 27.528 0.353
10 orbits �2:5951 110.50 �2:5211 2.851 101.80 7.871 �2:5933 0.068 110.11 0.353
20 orbits �5:1902 442.01 �5:0422 2.851 407.22 7.871 �5:1867 0.068 440.45 0.353
100 orbits �25:951 11050 �25:211 2.851 10181 7.871 �25:933 0.068 11011 0.353

Table 3 Change in PE after 20 orbit periods of object 1 for case 1. “F-P” indicates propagation via the
Fokker-Planck solution, and the number after “STT” indicates the order of the expansion of the dynamics

Linear F-P (STT:1) F-P (STT:2) F-P (STT:3) F-P (STT:4) F-P (Complete)

�PE 23725.31 23725.31 116.8219 0.003063 8:71507 � 10�5 3:82374 � 10�6
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consistency for many applications. For the two-body problem, the C
++ implementation is able to generate both first- and second-order
STTs in less than a second on a Core 2 Duo laptop. Even for more
complex dynamical systems that do not have analytical solution
flows, only 62 � 63 � 252 ordinary differential equations in Eq. (17)
need to be solved to generate STTs up to second-order. The proposed
method has the potential of consistently propagating PDFs with less
computational burden than existing techniques. For example, an
Edgeworth filter attaining the same level of accuracy as the second-
order STT requires the evaluation of 2021 sigma points [2].
Furthermore, unlike a Monte Carlo analysis, where the dynamics
must be integrated for every sample point of every epoch, the STT
needs to be integrated only once per epoch [4,7].

V. Conclusion

In this paper, recent developments in analytical nonlinear
propagation of uncertainty for deterministic Hamiltonian dynamical
systems were applied to the two-body problem. For such systems, as
a consequence of the solution of the Fokker-Planck equation, the
probability density function can be analytically propagated as long as
an analytical expression for the initial probability density function
and the solution flow of the dynamics exist. Oneway of obtaining an
analytical dynamics solution is to use the STT concept, which is a
Taylor series expansion of the dynamics to arbitrary order.Numerical

results show that this method is, with reasonable computational
burden, capable of propagating uncertainty while maintaining
consistency. Potential applications includemore robust correlation of
optical tracks and initial orbit determinationvia the admissible region
concept.

Future work is needed to develop ways to incorporate more
complex dynamical models, such as the full perturbation due to a
nonspherical gravity field, or effects due to nonconservative forces.

Appendix A: State Transition Matrix
for Averaged J2 Perturbation

Let �P � �@PX�t�=@PX0�, �D � �@DX�t�=@DX0�, JPD�
f@PX�t�=@DX�t�g, and JDP;0 � �@DX0=@PX0�. Then,

�P � JPD 	�D 	 JDP;0 (A1)

�D has no singularities

�D�1; 1� ��D�2; 2� ��D�3; 3� ��D�4; 4�
��D�5; 5� ��D�6; 6� � 1 (A2)

�D�2; 1� �
�
� 3�2

L4
� J2

�
3�4r2E
L8

��
L

G

�
3
�
1 � 3

H2

G2

��
t (A3)

�D�2; 3� ��D�4; 1� � J2
�
9�4r2E
4L8

��
L

G

�
4
�
1 � 5

H2

G2

�
t (A4)

�D�2; 5� � J2
�
9�4r2E
2L8

��
L

G

�
4
�
H

G

�
t (A5)

�D�4; 3� � J2
�
3�4r2E
2L8

��
L

G

�
5
�
2 � 15

H2

G2

�
t (A6)

�D�4; 5� ��D�6; 3� � J2
�
15�4r2E
2L8

��
L

G

�
5
�
H

G

�
t (A7)

�D�6; 1� � J2
�
9�4r2E
2L8

��
L

G

�
4
�
H

G

�
t (A8)

�D�6; 5� � �J2
�
3�4r2E
2L8

��
L

G

�
4

t (A9)

Unless otherwise stated, only nonzero elements of a matrix are listed
in this section. JPD and JDP;0, on the other hand, can contain 0=0
singularities

JPD�1; 1� � JPD�2; 2� � JPD�2; 4� � JPD�2; 6� � 1

JDP;0�1; 1� � JDP;0�2; 2� � JDP;0�3; 1� � JDP;0�5; 1� � 1 (A10)

JPD�4; 4� � JPD�4; 6� �G JDP;0�3; 3� � JDP;0�5; 3� � �G0

(A11)

JPD�3; 4� � �JPD�3; 6� � �g JDP;0�3; 4� � JDP;0�5; 4� � �g0

(A12)

JPD�6; 6� � H JDP;0�5; 5� � �H0 (A13)

JPD�5; 6� � �h JDP;0�5; 6� � �h0 (A14)

0 5 10 15 20
-0.5

0

0.5

1

1.5

2

2.5
x 10

4

Orbit periods of Object 1

∆

Linear
F-P (STT:1)
F-P (STT:2)
F-P (STT:3)
F-P (STT:4)
F-P (Complete)

0 5 10 15 20
-10

-5

0
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10

15

Orbit periods of Object 1

−
ln

 (

Linear

F-P (STT:1)

F-P (STT:2)

F-P (STT:3)

F-P (STT:4)

F-P (Complete)

)

Fig. 8 The change in PE�t� over time using various propagation
methods for case 1 (top) and case 2 (bottom). For case 1, the linear and
F-P (STT:1) curves and the F-P (STT:2) through F-P (Complete) curves
are nearly identical, respectively. For case 2, a log scale is used due to the
larger spread of values compare to case 1.
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JPD�3; 1� � �JPD�3; 3� �
G

G2 � g2

JDP;0�2; 4� � JDP;0�4; 4� � �
G0

�G0�2 � �g0�2 (A15)

JPD�4; 1� � �JPD�4; 3� �
g

G2 � g2

JDP;0�2; 3� � �JDP;0�4; 3� �
g0

�G0�2 � �g0�2 (A16)

JPD�5; 3� � �JPD�5; 5� �
H

H2 � h2

JDP;0�4; 6� � �JDP;0�6; 6� � �
H0

�H0�2 � �h0�2 (A17)

JPD�6; 3� � �JPD�6; 5� �
h

H2 � h2

JDP;0�5; 4� � �JDP;0�6; 5� �
h0

�H0�2 � �h0�2 (A18)

But these singularities cancel out when �P is computed

�P�1; 1� � 1 (A19)

�P�2;1���D�2;1���D�2;3���D�2;5���D�4;1�
��D�4;3���D�4;5���D�6;1���D�6;3���D�6;5� (A20)

�P�2; 3� � �G0f�D�2; 3� ��D�4; 3� ��D�6; 3�
��D�2; 5� ��D�4; 5� ��D�6; 5�g (A21)

�P�2; 4� � �g0f�D�2; 3� ��D�4; 3� ��D�6; 3�
��D�2; 5� ��D�4; 5� ��D�6; 5�g (A22)

�P�2; 5� � �H0f�D�2; 5� ��D�4; 5� ��D�6; 5�g (A23)

�P�2; 6� � �h0f�D�2; 5� ��D�4; 5� ��D�6; 5�g (A24)

�P�3; 1� � �gf�D�4; 1� ��D�4; 3� ��D�4; 5�
��D�6; 1� ��D�6; 3� ��D�6; 5�g (A25)

�P�3; 3� �
GG0

G2 � g2
� gg0

�G0�2 � �g0�2 G
0gf�D�4; 3�

��D�4; 5� ��D�6; 3� ��D�6; 5�g (A26)

� cosf�g � g0� � �h � h0�g �G0gf�D�4; 3� ��D�4; 5�
��D�6; 3� ��D�6; 5�g (A27)

�P�3; 4� �
Gg0

G2 � g2
� gG0

�G0�2 � �g0�2 � g0gf�D�4; 3�

��D�4; 5� ��D�6; 3� ��D�6; 5�g (A28)

� sinf�g � g0� � �h � h0�g � g0gf�D�4; 3� ��D�4; 5�
��D�6; 3� ��D�6; 5�g (A29)

�P�3; 5� � gH0f�D�4; 5� ��D�6; 5�g (A30)

�P�3; 6� � gh0f�D�4; 5� ��D�6; 5�g (A31)

�P�4; 1� �Gf�D�4; 1� ��D�4; 3� ��D�4; 5�
��D�6; 1� ��D�6; 3� ��D�6; 5�g (A32)

�P�4; 3� �
gG0

g2 �G2
� Gg0

�G0�2 � �g0�2 �G0Gf�D�4; 3�

��D�4; 5� ��D�6; 3� ��D�6; 5�g (A33)

� sinf�g � g0� � �h � h0�g �G0Gf�D�4; 3� ��D�4; 5�
��D�6; 3� ��D�6; 5�g (A34)

�P�4; 4� �
gg0

G2 � g2
� GG0

�G0�2 � �g0�2 � g0Gf�D�4; 3�

��D�4; 5� ��D�6; 3� ��D�6; 5�g (A35)

� cosf�g � g0� � �h � h0�g � g0Gf�D�4; 3� ��D�4; 5�
��D�6; 3� ��D�6; 5�g (A36)

�P�4; 5� � �GH0f�D�4; 5� ��D�6; 5�g (A37)

�P�4; 6� � �Gh0f�D�4; 5� ��D�6; 5�g (A38)

�P�5; 1� � �hf�D�6; 1� ��D�6; 3� ��D�6; 5�g (A39)

�P�5; 3� � hG0f�D�6; 3� ��D�6; 5�g (A40)

�P�5; 4� � hg0f�D�6; 3� ��D�6; 5�g (A41)

�P�5; 5� �
HH0

H2 � h2
� hh0

�H0�2 � �h0�2 � hH0�D�6; 5� (A42)

� cos�h � h0� � hH0�D�6; 5� (A43)

�P�5; 6� �
Hh0

H2 � h2
� hH0

�H0�2 � �h0�2 � hh0�D�6; 5� (A44)

�� sin�h � h0� � hh0�D�6; 5� (A45)

�P�6; 1� � Hf�D�6; 1� ��D�6; 3� ��D�6; 5�g (A46)

�P�6; 3� � �HG0f�D�6; 3� ��D�6; 5�g (A47)

�P�6; 4� � �Hg0f�D�6; 3� ��D�6; 5�g (A48)

�P�6; 5� �
hH0

H2 � h2
� Hh0

�H0�2 � �h0�2 � HH0�D�6; 5� (A49)
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� sin�h � h0� � HH0�D�6; 5� (A50)

�P�6; 6� �
hh0

H2 � h2
� HH0

�H0�2 � �h0�2 � Hh0�D�5; 6� (A51)

� cos�h � h0� � Hh0�D�5; 6� (A52)

Note that the Delaunay angles only appear as a difference between
the initial and current values, meaning that, because the rate of
change of the angles are well defined and constant for any orbit, the
differences are also well defined.
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