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Abstract—In this paper, we propose a non-linear Bayesian
estimation technique where, for a set of observations, the physical
limits of the knowledge of the observed object are represented
not as likelihood functions but as probability density functions
(pdfs). When the codimension of the observations are high, a
direct numerical implementation of Bayes’ theorem is practical.
The pdfs are mapped analytically in time by means of a special
solution to the Fokker-Planck equations for deterministic systems.
This approach requires no a priori information, enables direct
comparison of observations with any probabilistic data, and is
robust to outlier observations.

I. INTRODUCTION

Situational awareness of resident space objects (RSOs) such
as active satellites and space debris is known to be a data
starved problem compared to traditional estimation problems
in that objects may not be observed for days if not weeks [1].
Therefore, consistent characterization of the uncertainty asso-
ciated with each state estimate is crucial in maintaining an
accurate catalog of RSOs. Recently in astrodynamics, much
attention has been given to the non-linear deformation of
uncertainty for the orbiter problem as well as its applications
to object correlation, observation association, and conjunction
assessment [2]–[5]. Simultaneously, the motion of satellites in
Earth orbit is well-modeled in that it is particularly amenable
to having their solution and their uncertainty described through
analytic or semi-analytic techniques. Even when stronger non-
gravitational perturbations such as solar radiation pressure
and atmospheric drag are encountered, these perturbations
generally have deterministic components that are substantially
larger than their time-varying stochastic components [6], [7].

Traditionally, orbit determination has been conducted with
some type of batch or sequential estimation algorithm, whose
a priori information is supplied via geometric techniques [8],
[9]. Although conventional initial orbit determination (IOD)
works well for celestial bodies that are predominantly influ-
enced by gravity and can be observed over many nights, it
is less effective for RSOs which are observed in short bursts
and experience many perturbing forces including atmospheric
drag, irregularities of the central body, and solar radiation
pressure, just to name a few. Moreover, since IOD is geometry-
based, it assumes the association of observations (i.e. that
they were of the same object) and does not provide error
bounds to its state estimates. Especially in the realm of optical

(bearing-only) observations, these difficulties are referred to
as too short arc (TSA) [10]. The more general problem of
multiple target tracking using bearing only sensors has also
been tackled outside of astrodynamics, but most solutions
similarly require a reference state, a Gaussian assumption on
the error distribution, or great computational power [11], [12].

In this paper, we propose a non-linear Bayesian (initial)
orbit determination technique where the observations are ex-
pressed not as likelihood functions but rather as pdfs in the
state space. The integral of the likelihood over the entire
state space is divergent for underdetermined systems, but by
placing a few physical constraints, one can limit the domain in
which the truth state lies in, giving us tractable compact pdfs.
Consequently, these pdfs represent not only the uncertainty of
an observation due to errors but also the physical limits of the
knowledge of variables that are not directly observed: range
and range-rate for bearing-only observations, for example.
In the TSA problem, the domain of the pdf is called the
admissible region [13], [14]. Furthermore, if the pdfs are of
high codimension, as is the case for bearing-only observations
considering angular rates as directly observed variables, then
they can be combined efficiently via a numerical evaluation
of Bayes’ theorem. The above approach is attractive because
it requires no a priori information, enables direct comparison
with any probabilistic data at all stages of the estimation, and is
robust to outlier observations. The association of observations
and state estimation are conducted simultaneously for any
number of observations or dynamical model. It also handles
well ambiguities in the number of orbit periods between
observations. The pdfs are mapped analytically in time by
means of a special solution to the Fokker-Planck equations
for deterministic systems [15], [16]. We use state transition
tensors (STTs) to approximately describe the solution flow to
the dynamics, as STTs are defined even for systems with no
closed-form solutions [15], [17].

The outline of this paper is as follows. We first introduce the
necessary mathematical concepts, including the generalized
admissible region, the combination of pdfs via Bayes’ rule,
and the analytical propagation of pdfs (Background). Next,
an example is shown for processing optical observations of
two Earth-orbiting objects in the same orbit but of different
phase (Example). Our theory provides a semi-analytical frame-
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work that is distinct from other approaches currently being
developed in the field for dealing with the highly non-linear
dynamical environment that RSOs encounter.

II. BACKGROUND

In this section, we only aim to give a brief introduction on
the relevant mathematical results. Further discussions on the
implementation of the theory discussed in this section can be
found in the authors’ previous papers [5], [18], [19].

A. The Generalized Admissible Region

The batch and sequential filters, the two most commonly
utilized estimation techniques in orbit determination, can
be derived as a linear, unbiased, maximum a posteriori
estimator, where the observation and a priori errors are taken
into account up to their second moments.

Theorem 2.1: Suppose observation error is unbiased with a
covariance of R and the a priori state uncertainty is similarly
unbiased with a covariance of P̄ . Then, the linear, unbiased,
maximum a posteriori estimate x̂ and its associated covariance
P is

P =
[
H̃TR−1H̃ + P̄−1

]−1
(1)

x̂ = P (H̃TR−1y + P̄−1x̄), (2)

where y is the observation deviation from the reference and
H̃ is the linearized relationship between the observations and
the states.

Proof : See [8]. �

Furthermore, dynamical modeling errors can be included
in the analysis as white noise (state noise compensation) or
a Gauss-Markov process (dynamic model compensation) [8].
A main limitation of this approach is that the filtering and
estimation process is built around an assumption that the
true solution is close to the mean solution found from the
pdf. For many problems that involve uncorrelated observations
with large uncertainties, however, this is a poor starting point.
Indeed, the application of particle filters and sigma point
filters, for example [20], [21], have been developed to deal
with these limitations.

The method proposed in this paper, on the other hand,
takes a fundamental approach to the problem, with our
novelty being that we define and describe a fully analytical
approach to the general orbit determination problem. We start
by describing any type of observation as a probability density
function (pdf) of the state of the observed object.

Definition 2.1: Let X be the n-dimensional state space and
define an invertible transformation F : X 7→ Y to some space
Y . Further, let Ȳ be a m (≤ n) dimensional subset of Y . An
attributable vector Yt0 ≡ Y0 ∈ Ȳ is a vector containing all
of the directly observed variables for a given observation at
time t0.

Definition 2.2: Any variables in set Y \ Ȳ are referred to
as unobserved.

Definition 2.3: Suppose that, given some set of criteria C,
A is a compact set in X that meet C. Then, the generalized
admissible region FC [X(t0);Y0] is a pdf over X assigned to
an attributable vector Y0 such that the probability p that the
observed object exists in region B ⊂ A at time t0 is

p[X(t0)] =

∫
B

FC [X(t0);Y0]dX0
1dX0

2 . . . dX
0
n, (3)

where X(t0) ∈ X and

X(t0) ≡ X0 = (X0
1 , X

0
2 , . . . , X

0
n). (4)

Note that we impose
∫
A
FC [X(t0);Y0]dX0 = 1.

Conceptually, the generalized admissible region expresses
our limited knowledge regarding the unobserved variables. In
conventional filtering, pdfs of the observations only describe
the error in the attributable vector and are realized in the
state space as likelihoods. For underdetermined systems, the
integral of the likelihood function over the state space is
divergent as we gain no information from the observations
in coordinate directions corresponding to the unobserved
variables. We realize, however, that knowledge in these
directions is not completely lacking for many real-world
systems as the likelihood function may suggest. That is, we
may add physical constraints C to the observed object’s state
such that we define a compact pdf F still representative of all
relevant states. Furthermore, the uncertainties due to errors
in the attributable vector are often much smaller than the
uncertainties due to our limited knowledge in the unobserved
variables, motivating the following remark.

Remark 2.1: The generalized admissible region can be re-
garded as a compact n−m dimensional manifold embedded
in an n dimensional space.

B. Combination of Observations

By converting observation information into a pdf and
propagating them to a common epoch, observations can be
rationally combined with any other probabilistic data using
Bayes’ theorem, be it new observations or density information
from the two-line element (TLE) catalog, for example.

Definition 2.4: An event EO1(V τ ) where some observation
O1 made at time t1 is consistent with some region V τ in
state space at time τ if, given P is a probability measure and
f [X(t1);O1] is the pdf associated with O1,

P [EO1(V τ )] =

∫
V τ

{
T (τ, t1) ◦ f [X(t1);O1]

}
dX, (5)

where T (τ, t1) is a transformation that maps f from time t1

to τ and X ≡ X(τ). Here, the term observation is used in
the statistical sense: it is not limited to physical observations
but rather apply to results from any kind of experiment or
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analysis. We discuss transformation T in more detail in the
following subsection.

Corollary 2.1: Let EO2=O1 be an event where some obser-
vation O2 made at time t2 is of the same object as O1. Then,
if the pdf associated with O2 is g[X(t2);O2],

P [EO1(V τ )|EO2=O1 ] =

∫
V τ

h[X(τ)]dX (6)

where

h[X(τ)] =

{T (τ, t1) ◦ f [X(t1);O1]}{T (τ, t2) ◦ g[X(t2);O2]}∫
{T (τ, t1) ◦ f [X(t1);O1]}{T (τ, t2) ◦ g[X(t2);O2]}dX

, (7)

and | indicates conditional probability. The integral in (7) is
over the entire state space.

Proof : Given EO1(V τ ) true, for EO2=O1 to also be true,
we require EO2(V τ ) for any choice of V τ . Therefore,

P [EO2=O1 |EO1(V τ )] = P [EO2(V τ )]

=

∫
V τ
{T (τ, t2) ◦ g[X(t2);O2]}dX. (8)

Then apply Bayes’ theorem [22]. �

Now, for systems where the pdfs f and g are of high
codimension, the sparseness of the problem allows for efficient
ways to associate observations and simultaneously obtain a
state estimate.

Corollary 2.2: For observations O1 and O2 such that

dim
{
f [X(t1);O1]

}
+ dim

{
g[X(t2);O2]

}
< dim(X), (9)

P [EO2=O1 ] = 0 if for all X,

{T (τ, t1)◦f [X(t1);O1]}{T (τ, t2)◦g[X(t2);O2]} = 0. (10)

Proof : Apply the theory of general position to Remark
2.1 [23]. �

Therefore, for a set of observations that satisfy (9), their
association does not have to be assumed as it is determined as a
consequence of the combination process (6). We conclude that
this method can be particularly robust to outlier observations.

Furthermore, if f and g have high codimension, we can
employ linear extrapolation to rapidly discretize the pdfs
and evaluate (6) numerically without having to face the
consequences of the so called curse of dimensionality [18].
(9) suggests that if the two pdfs are associated with the
same object, then more and more constraints must be met
for their intersection to have higher dimensions [19]. The a
posteriori pdfs, then, would most likely span a very small
region in state space if not singularly defined at a point.
Subsequent application of (9) becomes computationally trivial.
An example of the above would be bearing-only observations
where angular rates are considered as directly observed: if the
state space is 6-dimensional, the codimension of each pdf is
4. Refer to Section III for a numerical implementation.

C. Analytical Non-Linear Propagation of Uncertainty

In general, to find a transformation T that maps a pdf
in time as discussed in Definition 2.4, one must solve the
Fokker-Planck differential equations.

Theorem 2.2: For a dynamical system Ẋ = f(X, t) that
satisfies the Itô stochastic differential equation, the time evo-
lution of a probability density function (pdf) p(X, t) over X
at time t is described by the Fokker-Planck equation [24]

∂p(X, t)

∂t
= − ∂

∂Xi
{p(X, t)fi(X, t)}

+
1

2

∂2

∂Xi∂Xj

[
p(X, t)

{
G(X, t)Q(t)GT(X, t)

}
ij

]
, (11)

where a single subscript indicates vector components and a
double subscript indicates matrix components. Einstein nota-
tion is assumed hereafter. Matrices G and Q characterize the
diffusion.

Proof : See [24], [25]. �

However, for deterministic systems, a special solution exists.

Lemma 2.1: For a deterministic dynamical system, the
probability Pr(X ∈ B) =

∫
B p(X, t)dX over some volume

B in phase space is an integral invariant.
Proof : Canceling out terms in (11) pertaining to diffusion,

we have
∂p(X, t)

∂t
= − ∂

∂Xi
{p(X, t)fi(X, t)} . (12)

Thus, Pr(X ∈ B) satisfies the sufficient condition for integral
invariance. See [15], [26], [27] for full proof. �

Theorem 2.3: For a deterministic dynamical system, given
solution flow φ(t;X0, t0) to the dynamics for initial conditions
X(t0) = X0, the pdf p(X, t) is expressed as

p(X, t) = p[φ(t;X0, t0), t] = p(X0, t0)

∣∣∣∣ ∂X∂X0

∣∣∣∣−1 , (13)

where | · | indicates the determinant operator.
Proof : From the substitution rule and integral invariance,

for some phase volume B,

Pr(X ∈ B) =

∫
B
p(X, t)dX (14)

=

∫
B0

p(X, t)

∣∣∣∣ ∂X∂X0

∣∣∣∣ dX0 (15)

=

∫
B0

p(X0, t0)dX0, (16)

where B0 is the phase volume corresponding to B at time t0.
Equating integrands in (15) and (16), we find (13). See [15],
[16] for full proof. �

Therefore, a pdf can be expressed analytically for all time
given an analytical expression of both the initial pdf and the
solution flow. For systems with no closed-form solution flow,
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we may obtain an approximate analytical solution from a
Taylor series expansion.

Definition 2.5: If a Taylor series expansion of a dynamical
differential equation Ẋ = f(X, t) is taken up to order m about
some reference trajectory X∗, the time derivative of the state
deviation ẋ = Ẋ− Ẋ∗ is expressed as

ẋi(t) =
m∑
p=1

1

p!
Ai,k1...kpx

0
k1 . . .x

0
kp , (17)

where the subscripts indicate the component of each tensor
and A is the local dynamics tensor (LDT) of order p [15]

Ai,k1...kp =
∂pf

∂X0
k1
. . . ∂X0

kp

∣∣∣∣∣
∗

. (18)

The comma in the subscript simply denotes that the i-th
component is not summed over. The subscript ∗ indicates
that A is evaluated over the reference trajectory X∗.

Definition 2.6: If a Taylor series expansion of a solution
flow X(t;X0, t0) = φ(t;X0, t0) for a dynamical system Ẋ =
f(X, t) is taken up to order m about some reference trajectory
X∗, x is expressed as

xi(t) =
m∑
p=1

1

p!
Φi,k1...kpx

0
k1 . . .x

0
kp , (19)

where Φ is the state transition tensor (STT) of order p [15]

Φi,k1...kp =
∂pXi

∂X0
k1
. . . ∂X0

kp

∣∣∣∣∣
∗

. (20)

Corollary 2.3: The time derivative of the STT of order p is
a function only of the LDT and STT of order up to p.

Proof : Take the time derivative of (19) and equate to (17).
Details of this differential equation is in [5].

Corollary 2.4: The mean M(t) = m(t) + X∗(t) and
covariance matrix [P ](t) of a pdf p[X(t)] can be propagated
non-linearly as

mi(t) =
m∑
p=1

1

p!
Φi,k1...kp×∫

∞
p(x0)

∣∣∣∣ ∂X∂X0

∣∣∣∣−1 x0
k1 . . .x

0
kpdx0 (21)

[P ]ij(t) =

[
m∑
p=1

m∑
q=1

1

p!q!
Φi,k1...kpΦj,l1...lq×∫

∞
p(x0)

∣∣∣∣ ∂X∂X0

∣∣∣∣−1 x0
k1 . . .x

0
kpx

0
l1 . . .x

0
lqdx

0

]
−mi(t)mj(t) (22)

Proof : From (13),

M(t) =

∫
∞

X(t)p[X(t)]dX

=

∫
∞
φ(t;X0, t0)p(X0)

∣∣∣∣ ∂X∂X0

∣∣∣∣−1 dX0 (23)

[P ](t) =

∫
∞

[X(t)−M(t)]T[X(t)−M(t)]p[X(t)]dX

=

∫
∞

[φ(t;X0, t0)−M(t)]T×

[φ(t;X0, t0)−M(t)]p(X0)

∣∣∣∣ ∂X∂X0

∣∣∣∣−1 dX0 (24)

Then, subtract the reference trajectory and substitute (19). �

III. EXAMPLE

In this section, we discuss association and initial orbit de-
termination results for optical observation simulations of two
objects in the same circular MEO orbit but of different phase.
The purpose of this example is to graphically highlight how
our method works without the need of a priori information
regarding the state of the observed objects, assumptions on the
association of observations, or specification of the dynamical
system used. The Keplerian orbital elements of the first object
(Object 1) is:

(a, e, i,Ω, ω,M) = (25)
(3.9994, 0.0006,1.1284, 4.9148, 4.2128, 2.9461), (26)

where units are in Earth radii and rad. The second object
(Object 2) proceeds the first in mean anomaly by 2π/3 rad.

We simulated ground-based zero-error observations of right
ascension (α), declination (δ), and their time derivatives. Thus
X = (α, δ, α̇, δ̇,h,Θ, φ), where (Θ, φ) is the angular position
and h is the altitude of the observation point. We then gen-
erated generalized admissible regions F [X(t0);X0] for each
observation constrained by orbit energy, apoapsis and periapsis
height, and limits on range / range-rate; refer to Fujimoto
and Scheeres for details [18]. The error-free approximation
is good since the state uncertainty due to observation error is
much less than that due to lack of observability in range and
range-rate [28]. It also simplifies computation as, from Remark
2.1, the pdfs are 2-dimensional manifolds embedded in a 6-
dimensional space, making the problem sparse. We assumed
no a priori information regarding the observed objects, and
thus used a uniform initial pdf in the topocentric spherical
coordinates.

We chose the Poincaré orbital element space X =
(L, l,G, g,H, h) as our state space variables since they are
not only non-singular but also canonical: they can thus be
naturally grouped by their coordinate-momenta symplectic
pairs [9], [28]. The non-singular property assures that the pdf
mapping function T (τ, t0) is well defined everywhere. Refer
to Appendix A for the definition of Poincaré variables. For
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computation, the Poincaré space was discretized such that:

Xmin = (4.4621, 0,−3,−3,−4,−4)
T (27)

Xmax = (12.6206, 6.2832, 3, 3, 4, 4)
T
, (28)

where Xmin and Xmax are the lower and upper limits of the
discretization, respectively. Units are in Earth radii, hours, and
radians. In each coordinate direction, the space was divided
into 100 (L,) 77 (l,) 73 (G,) 73 (g,) 98 (H,) and 98 (h) bins
for a total of 3.9408× 1011 bins.

For simplicity, we implemented two-body dynamics for this
example:

X(t;X0) =
(
L0, l0 + µ2t/(L0)2,G0, g0,H0, h0

)
, (29)

Since two-body dynamics is deterministic, results in Theorem
2.3 apply. We may implement more complex dynamical mod-
els as long as they are deterministic, such as those including
atmospheric drag [29], effects due to the oblateness of the
Earth [30], solar radiation pressure, etc.

Fig. 1 is a graphical representation of the process explained
in Section II-B for two observations of the same object: Object
1. The first observation is taken at the epoch time and the
second observation 26 hours later. The top two horizontal sets
of contour plots represent the value of the generalized admis-
sible regions that have been dynamically evolved to a common
epoch and projected onto the 3 2-dimensional subsets of the
Poincaré space. Even though the generalized admissible region
was defined to be a uniform pdf in the topocentric spherical
coordinates space, the pdf is non-uniform in the Poincaré
space due to the non-linear transformation between the two
spaces. The time propagation has also shredded the pdf for the
second observation in the L-l plane [28]. The bottom set of
plots is the combined distribution h[X(τ)]. The yellow asterisk
is the true state of the observed object. Note that although
these distributions are plotted on 2-dimensional subspaces, the
correlation was conducted in the full 6-dimensional Poicaré
space. When associating two observations of the same object,
we see that h > 0 for a very small region of the state space;
for this particular example, h > 0 for 4 bins. Furthermore, the
true state is included in the region in state space where h > 0.
Therefore, the state estimate is good.

Fig. 2 is a graphical representation of the association of
two observations of separate objects. The first observation of
Object 1 is again taken at the epoch time and the second
observation of Object 2 19 hours later. We find that regions
exist where h > 0 even though we expect h = 0 for all bins.
These fictitious multi-rev solutions are due to the ambiguity
of the number of orbit revolutions between observations [18].
Again, the generalized admissible regions, and subsequently
their combined pdfs, indicate the bounds of one’s knowledge
regarding an object’s state: with just these two observations,
their association cannot be confidently inferred. If we are to
add an observation of Object 2 taken 29 hours after epoch, we
eliminate all multi-rev solutions and the combined pdf h = 0
as expected.

IV. CONCLUSION

In this paper, a new approach to the estimation of Earth-
orbiting objects was proposed, where observations are ex-
pressed as pdfs that represent not only their errors but also
the limited knowledge in the unobserved variables. The pdfs,
referred to as generalized admissible regions, are bounded by
a set of physical constraints. Bayes’ rule is employed to ra-
tionally combine multiple observations and other probabilistic
data. For deterministic systems, the Fokker-Planck equation,
which dictate the time propagation of pdfs, has a special
solution allowing for an analytical description of the pdf for all
time. Through an example for ground-based error-free optical
observations, our method was shown to be effective.

APPENDIX A
DEFINITION OF POINCARÉ ORBITAL ELEMENTS

The Poincaré orbital elements are defined here in terms of
a transformation from the topocentric spherical coordinates.
The transformation is performed in several steps. First, from
topocentric spherical coordinates to geocentric Cartesian co-
ordinates:

T1 : 〈ρ, ρ̇,X〉 → 〈x, y, z, ẋ, ẏ, ż〉,

then to orbital elements [9]:

T2 : 〈x, y, z, ẋ, ẏ, ż〉 → 〈a, e, i,Ω, ω,M〉,

where a is the semi-major axis, e is the eccentricity, i ∈ [0, π]
is the inclination, Ω ∈ [−π, π] is the longitude of the ascending
node, ω ∈ [−π, π] is the argument of periapsis, and M ∈
[−π, π] is the mean anomaly. Finally, we transform the orbital
elements to Poincaré variables:

T3 : 〈a, e, i,Ω, ω,M〉 → 〈L, l,G, g,H, h〉,

which are defined as:

l = Ω + ω +M L =
√
µa

g =

√
2L
(

1−
√

1− e2
)

cos(ω + Ω) G = −g tan(ω + Ω)

h =

√
2L
√

1− e2 (1− cos i) cos Ω H = −h tan Ω,

where µ is the standard gravitational parameter.
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