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This paper presents a methodology for computationally efficient, direct trajectory gen-
eration for autonomous spacecraft rendezvous using sampling with a distance or time
cost function to be minimized. The approach utilizes a randomized A* algorithm called
Sampling-Based Model Predictive Optimization (SBMPO) that exclusively samples the in-
put space and integrates the dynamic model of the system. A primary contribution of this
paper is the development of appropriate optimistic A* heuristics that take into account a
goal position and velocity and are based on the minimum distance and minimum time con-
trol problems for the vehicle. These heuristics enable fast computation of trajectories that
end in zero relative velocity. Additionally, this paper introduces an alternative approach to
collision avoidance for use in graph-based planning algorithms. By referencing the full state
of the vehicle, a method of imminent collision detection is applied within the graph search
process of the trajectory planner. Using a six degree-of-freedom relative motion space-
craft dynamic model, simulation results are illustrated for generating rendezvous-feasible
trajectories in cluttered environments.

Nomenclature

r Position vector, m
v Velocity vector, m/s
a Acceleration vector, m/s2

ω Angular velocity vector, deg/s
q Rotation quaternion vector
Θ Rotation matrix
Ω Kinematic quaternion matrix
m Mass, kg
J Inertia matrix
u Thrust control input vector
τ Torque control input vector

I. Introduction

As indicated by recent NASA studies and the 2010 US Space Policy, there is an imminent need to develop
technologies for the mitigation of orbital space debris.1 It has been suggested that it will be necessary to
conduct a minimum of five debris removal missions per year beginning in 2015 in order to merely maintain
the current population of space debris.2 The increasingly cluttered state of orbital space poses a threat to
the future success of manned and unmanned space flight.
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A major hurdle in achieving such technologies is the development of adequate trajectory planning meth-
ods. Intelligent autonomous navigation requires the generation of paths and control tracking inputs to
traverse a route towards a goal. This intelligence is achieved via a planning algorithm that is, ideally,
capable of quickly determining an optimal path and control inputs subject to defined system constraints.

Partly motivated by the necessity to mitigate the threats associated with the growing presence of
space debris, various autonomous spacecraft missions have been undertaken, including Orbital Express and
Spacecraft for the Universal Modification of Orbits/Front-end Robotics Enabling Near-term Demonstration
(SUMO/FREND) by DARPA and Autonomous Nanosatellite Guardian for Evaluating Local Space (AN-
GELS) by Air Force Research Laboratory (AFRL). Future advancement of autonomous spacecraft navigation
requires the development of innovative planning algorithms capable of generating trajectories in orbit.

With varying degrees of success, several methods have been attempted for solving the spacecraft trajectory
planning problem. These methods are largely representative of the planning techniques already employed for
robotic manipulators and wheeled vehicles. Spanning the various algorithms used for ground-based robots,
mixed integer linear programming (MILP),3,4 mixed integer nonlinear programming (MINLP),5 potential
functions,6 rapidly exploring random trees (RRTs),7,8 and calculus of variations9 have been researched as
possible solutions.

Critically necessary for aerospace work, the implementation of the system dynamic model allows for
explicit consideration of propulsion constraints when planning control inputs. Many of these algorithms are
hampered by an inability to deal with the nonlinear dynamics of the spacecraft and/or a lack of combined
position and orientation planning capabilities. Furthermore, several are incapable of planning in the presence
of obstacles. Only a few report computation times and these times typically prohibit the possibility of using
the methods in real-time.

Within the realm of the more general topic of direct trajectory generation, recent research has led to
approaches that employ optimization and randomly-generated graphs.10,11,12 These methodologies seek to
take advantage of the efficiency obtained via algorithmic optimization and the robustness of randomized,
sampling-based graph formation. When implemented with A*-type optimization, random graph methods
can incorporate a heuristic function that facilitates rapid computation of optimal trajectories. Unlike the
randomized A* approach,11,12 methods such as RRT*10 and sampling-based RRT13 do not utilize A* opti-
mization and, as a result, do not benefit from the efficiency achieved by using the prediction associated with
an optimistic heuristic.

Sampling Based Model Predictive Optimization (SBMPO)11,12 incorporates sampling and A* optimiza-
tion to generate trajectories. SBMPO has been demonstrated as an effective and efficient trajectory planning
technique for autonomous underwater vehicles (AUVs),14 ground-based mobile robots,15,16,17 and robotic
manipulators.18

Motivated by the promising results obtained using SBMPO in navigation and planning tasks for ground-
based robots, ongoing SBMPO research is focused on the continued refinement of the algorithm and appli-
cation to additional autonomous systems. In this work, the SBMPO algorithm is studied for application to
autonomous spacecraft rendezvous and docking duties with the ultimate goal of real-time trajectory planning
for orbital vehicles.

The efficiency of SBMPO is closely linked to the development of an appropriate optimistic A* heuristic. In
this paper, two recently developed heuristic functions, that are based on the solutions to the minimum time18

and minimum distance19 control problems, are presented. These heuristics facilitate the rapid computation
of trajectories that terminate with zero relative velocity, which is a requirement for spacecraft rendezvous
trajectory planning. Potentially useful in other approaches toward randomized A* planning, a primary
contribution of this paper is the application of these heuristics to the generation of rendezvous trajectories.

II. Preliminaries

This section provides a brief description of SBMPO and identifies the details of the spacecraft rendezvous
problem within the context of trajectory generation.

A. Brief Overview of Sampling-Based Model Predictive Optimization

SBMPO is a sampling-based algorithm that can be used for motion planning with kinematic and dynamic
models. It can plan using a variety of cost functions, including the standard sum of the squared error
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cost function that is commonly used in Model Predictive Control (MPC).20 At its inception, SBMPO was
motivated by a desire to utilize sampling and A*-type optimization in lieu of the nonlinear programming
strategies that are commonly employed for optimization in MPC. Use of these techniques provides SBMPO
with the ability to avoid local minima, when present, and maintain fast computations when implemented
with properly designed A* heuristics.

(a) (b)

Figure 1. (a) Block diagram describing SBMPO trajectory planning. (b) Illustration of the graph expansion
process in SBMPO.

The block diagram, shown in figure 1(a), identifies the essential structure of the SBMPO algorithm when
used for trajectory generation. The model, cost evaluation, and heuristic are supplied by the user and
may be tailored to suit certain aspects that are characteristic of the specific planning scenario. To enable
the trajectory generation process within the SBMPO algorithm, a graph is created in the planning space
from the start to the goal that consists of connected vertices that identify the states of the system, the
control inputs, and the cost associated with the states. Furthermore, to avoid infinitesimal improvements as
vertices are expanded, an implicit grid is imposed on the graph to discretize the planning space. A simplified
visualization of the graph generation process is shown in figure 1(b), which illustrates the discretization of
the planning space by identifying vertices V2 and V3 as occupying the same cell of the implicit grid. The
following are the main steps of SBMPO:11,12

1. Select a vertex with highest priority in the queue: The vertices are collected in the open list,
which ranks the potential expansion by their priority. The open list is implemented as a heap so that
the highest priority or lowest cost vertex that has not been expanded is on top. If the selected vertex
is the goal, SBMPO terminates. If not, the algorithm goes to step 2. The vertex representing the start
will have the highest priority as an initialization.

2. Sample input space: Generate a sample of the inputs to the system that satisfies the input con-
straints. The input sample and current state are passed to the system model and the system is
integrated to determine the next state of the system. It should be noted that the current state is the
state of the selected vertex.

3. Add new vertex to the graph: Check if the graph already contains a vertex whose state maps to
the new state of the system. If the vertex exists, only add an edge from the current vertex (i.e., the
selected vertex) to the vertex whose state is the same as the new state. Otherwise, add a vertex whose
state is the next state.

4. Evaluate new vertex cost: Use an A* heuristic to evaluate the cost of the generated vertices based
on the desired objective (i.e., shortest distance, shortest time, or least amount of energy, etc.). Add a
new vertex to the priority queue based on the vertexs cost.
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5. Repeat 2-4: Repeat steps 2-4 for a user-defined number of successors.

6. Repeat 1-5 until one of the stopping criteria is true: Steps 1-5 are repeated until the goal is
found or the maximum number of allowable iterations is achieved.

Table 1. Planner Performance Comparison

SBMPO RRT*

Distance (m) 7.39 8.28

Comp. Time (ms) 1.9 50.0

Figure 2. Comparison of SBMPO and RRT*.

By virtue of this strategy, SBMPO offers superior per-
formance when compared with other planning algorithms.
For comparison, consider a typical planning scenario for
a mobile robot with a kinematic model given by xk+1

yk+1

θk+1

 =

 xk

yk

θk

 +

 vt cos θk+1

vt sin θk+1

vθ

∆T, (1)

where x and y are the vehicle position components, θ
is the vehicle heading, and the control inputs vt and vθ
are the vehicle’s forward velocity and rotational velocity,
respectively. As indicated by the planning results shown
in figure 2 and summarized in table 1, SBMPO generates trajectories that are similar to those formed
with RRT*, but performs the calculation more than one order of magnitude faster. In complicated planning
scenarios, this significant discrepancy in computation time prohibits the use of RRT* and similar approaches.
Evident in the simple planning scenario shown in this comparison, the use of a heuristic for predicition
facilitates the rapid computation in SBMPO.

B. Six-DOF Relative Motion Spacecraft Model for Rendezvous

The spacecraft rendezvous and docking work presented in this paper requires the incorporation of the vehicle
dynamic model for full six degree of freedom (DOF) trajectory planning. Shown in control affine form, the
nonlinear dynamic equation describing the relative motion of the spacecraft with respect to the target is

v̇

ṙ

ω̇

q̇

 =


0̃

v̇

−J−1ω × Jω
1
2Ω(ω)q

 +


1
mΘT (q)u(t)

0̃

J−1τ(t)

0̃

 , (2)

where r and v represent the position and velocity of the spacecraft with respect to the target, ω is the angular
velocity in the spacecraft body frame, and 0̃ is the zero vector. As in McCamish,21 a spacecraft with the
characteristics defined in table 2 was used in simulation.

Essentially, the rendezvous and docking task may be simplified as a trajectory generation problem for
an autonomous chase spacecraft navigating relative to a target orbiting body. A successful solution to the
problem requires the determination of the path and control inputs necessary to achieve motion from an
initial position and orientation to some goal position and orientation. During the planning from initial to
goal configuration, the algorithm considers obstacles and other spatial restrictions, known motion and/or
acceleration of the target, and, in many cases, nonholonomic vehicle constraints. Also, unlike path generation,
the trajectory generation problem involves planning with conditions placed on the goal ending velocity.

III. Combined Relative Position and Attitude Trajectory Planning Using a
Dynamic Model

Unlike typical mobile robotics applications of A*-type path planning, spacecraft rendezvous trajectory
planning requires additional consideration of motion constraints that are fundamentally dictated by the

4 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ay
 1

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

45
49

 



nature of spacecraft docking. Specifically, the docking task requires that the spacecraft approach the goal in
a manner that seeks to match the motion of the target and prevents unwanted collision.

SBMPO enables the development of trajectories based on optimizing various physical metrics (e.g., dis-
tance, time, or energy). This versatility depends on the development of an appropriate heuristic used in the
A*-type planner.

In order to facilitate rapid computation of trajectories, SBMPO relies on a heuristic that predicts the
cost-to-goal as nodes are explored by the planner. Enabling the algorithm to efficiently converge to an
optimal solution, the A*-type planner requires an optimistic heuristic that is fairly non-conservative. When
implemented with a näıve or overly-conservative heuristic, A*-type algorithms are very computationally
inefficient. Therefore, it is crucial that the heuristic be carefully developed within the context of the planning
scenario.

A. Development of an Appropriate Minimum Time Heuristic

The necessity of forming a well-developed heuristic is evident when considering the problem of time-optimized
trajectory planning for a rendezvous scenario.

First, consider the equation describing the motion of a particle given by

r = vit+
1

2
ait

2, (3)

where r is the distance to the goal, vi is the current velocity, and ai is the current acceleration. Based on
this relationship, the predicted minimum time to reach the goal would be expressed by

t =
−vi ±

√
v2
i − 2air

ai
. (4)

Although a minimum time heuristic formed using this relationship is optimistic, the algorithm fails to
efficiently converge to a solution when it is implemented. When applied to simple planning scenarios similar
that shown in figure 2, this näıve minimum time heuristic fails to produce a solution in a reasonable number
of iterations (i.e., fewer than one million).

To enable efficient minimum time planning, an appropriate heuristic was formed using the solution to the
fundamental time optimal control problem. The minimum time control problem can be solved by forming the
Hamiltonian and applying Pontryagin’s Maximum Principle.22 Assuming that the controlled acceleration is
bound by

− a ≤ a ≤ ā, (5)

where a and ā are, respectively, the lower and upper limits for acceleration. The solution of the minimum
time control problem of Bryson22 can be generalized to yield

t2 − 2vi
a
t =

v2
i + 2(a+ ā)r

aā
, if r +

vi|vi|
2ā

< 0

t2 +
2vi
ā
t =

v2
i − 2(a+ ā)r

aā
, if r +

vi|vi|
2a

> 0. (6)

Figure 3. Minimum time control curve.

The minimum time computed using Eq. (6) corre-
sponds to the bang-bang optimal controller shown in fig-
ure 3, which illustrates switching curves that take the
system to the origin by applying either the minimum or
maximum control inputs (i.e., u = −a or u = ā). De-
pending on the intial conditions, the system uses either
the minimum or maximum control input to take the sys-
tem to the appropriate switching curve. For example, if
(ri, vi) corresponds to point p1 in figure 3, then the control
input u = −a is applied until the system reaches point p2

on the switching curve. At p2, the control input is then
switched to u = ā, which drives the system to the goal
where r = v = 0.
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B. Development of an Appropriate Minimum Distance Heuristic

Algorithm 1 minDistHeuristic(r, v, rG)

1: if r < rG then
2: rgoal = rG − r
3: if v < 0 then
4: rstop = −v2

ā
5: return 2rstop + rgoal
6: else if v > 0 then
7: rstop = −v2

a
8: if rstop > rgoal then
9: return 2rstop − rgoal

10: else
11: return rgoal
12: end if
13: else
14: return rgoal
15: end if
16: else if r > rG then
17: rgoal = r − rG
18: if v < 0 then
19: rstop = −v2

ā
20: if rstop > rgoal then
21: return 2rstop − rgoal
22: else
23: return rgoal
24: end if
25: else if v > 0 then
26: rstop = −v2

a
27: return 2rstop + rgoal
28: else
29: return rgoal
30: end if
31: else
32: if v < 0 then
33: rstop = −v2

ā
34: return 2rstop
35: else if v > 0 then
36: rstop = −v2

a
37: return 2rstop
38: else
39: return 0
40: end if
41: end if

For minimum distance path-only planning, it is suffi-
cient to use a heuristic that represents the Euclidean
distance between the expanded vertex and the goal.
However, when applied in a planner that propagates
the vehicle’s trajectory using the dynamic model,
this heuristic leads to a minimum distance trajec-
tory in which the vehicle accelerates, rather than
brakes, as it approaches the goal.

In scenarios such as autonomous rendezvous and
docking, where path-only planning is inappropriate,
it is necessary to develop a heuristic that considers
the full state of the vehicle throughout the path ex-
pansion process as the planner develops a trajectory
that seeks to match the goal state. For minimum
distance trajectory planning, the heuristic that was
developed is based on the fact that the distance to
goal r, the initial velocity vi, the final velocity vf ,
and the acceleration a are related by

v2
f = v2

i + 2ar. (7)

In order to stop at the goal, vf = 0, and the rela-
tionship becomes

rstop = − v
2

2a
, (8)

where rstop is the minimum stopping distance, v is
the velocity, and the sampled control thrust u is
bounded by

−ma ≤ u ≤ mā. (9)

The complete heuristic, given by algorithm 1,
has three input parameters: the relative position
of the vehicle r, the relative velocity of the vehi-
cle v, and the desired relative position of the vehicle
rG. The algorithm returns rstop, the minimum stop-
ping distance required to reach the goal at a desired
velocity subject to the acceleration bounds defined
within the sampler. In the event that the vehicle is
approaching the goal too fast and will not be able
to stop, lines 1-15 of the algorithm return a mini-
mum stopping distance that requires the vehicle to
go past the goal and return. Lines 16-30 deal with
the mirror case in which the vehicle has surpassed
the goal. In the special case where the vehicle is at the goal but the velocity is not zero, lines 31-41 are
referenced. In the event that that vehicle is at the goal and has a zero velocity, lines 30-40 are used and the
heuristic is returned as 0.

C. Development of Momentum-Aware, Imminent Collision Detection

When planning in cluttered environments, the algorithm requires a collision detection method to reject
vertices that spatially violate obstacles. Typically, obstacle avoidance is achieved by simply eliminating
vertices that result in direct collision. This method of basic collision detection is illustrated in figure 4(a).

For full-state trajectory planning, rudimentary collision detection does not consider additional constraints
placed on spatially viable vertices in the vicinity of obstacles that are none-the-less invalid for further
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(a) Nodes rejected as collision is detected. (b) Nodes preemptively rejected.

Figure 4. Illustrations of (a) rudimentary collision detection and (b) imminent collision detection.

expansion. For example, suppose that a vertex is generated that, based on its position, does not collide
with an obstacle but due to the velocity required to achieve the state at that vertex will, when expanded,
inevitably only generate child vertices that are in collision with an obstacle. Eventually, the vertex described
would be ignored, but at the cost of computational performance. Ideally, such a vertex, like the one labeled
V2 in figure 4(a), would be preemptively rejected for expansion.

To improve performance, a momentum-based imminent collision detection method was developed for
this problem. Using the same relationship applied to the minimum distance heuristic, imminent collision
detection is based on the vehicle’s ability to decelerate prior to collision. When used for collision detection,
the relationship is

vomax =
√

2ado, (10)

where vomax is the maximum viable velocity in the direction of the nearest obstacle and do is the minimum
distance to the nearest obstacle. Using imminent collision detection, the vertices are expanded and rejected
as shown in figure 4(b).

IV. Simulation Results for Combined Relative Position and Attitude Planning

(a) Minimum distance trajectory. (b) Minimum time trajectory.

Figure 5. Planned trajectories in uncluttered and cluttered space.
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The results presented in this section demonstrate the capability of the planner to rapidly generate six-
DOF trajectories that are appropriate for rendezvous in uncluttered and cluttered environments. These
results utilize the heuristics that are defined in Sections III-A and III-B to minimize time and distance,
respectively. When implemented with more conservative heuristic functions, SBMPO failed to converge to
a solution trajectory within the maximum number of iterations allowed.

In each of the simulations, the spacecraft is initially misoriented with Euler angles of (−45.0◦,−25.0◦, 0.0◦)
and is positioned at (−101.0m,−87.5m,−111.2m). In this configuration, the spacecraft is trailing the target,
which, as defined by the system dynamics, is located at the frame origin. Intending to rendezvous with the
target, the goal position and orientation is coincident with the frame origin.

A. Simulation Results in Uncluttered Environment Using Minimum Distance Heuristic

(a) Relative position components. (b) Relative velocity components.

(c) Euler angle components. (d) Angular velocity components.

Figure 6. Parameter profiles for minimum distance trajectory.

Most evident when deployed in obstacle-free environments, the planner generates minimum distance tra-
jectories that result in a desired relative position, attitude, and velocity with respect to the target. The
results in this section primarily serve to illustrate the effectiveness of the developed heuristic when used in
conjunction with the SBMPO algorithm to generate rendezvous feasible trajectories. Shown in figures 5(a)
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and 6, simulation results for uncluttered planning correspond to an expected control sequence, where the
vehicle decelerates as it closes in on the goal. When planning in uncluttered space, the minimum distance
solution approximately matches the minimum time solution driven by the bang-bang control sequence and
is optimal subject to randomized sampling. The rendezvous trajectory, corresponding to a path length of
174.02m, was generated in 0.483s.

B. Simulation Results in Cluttered Environment Using Minimum Time Heuristic

(a) Relative position components. (b) Relative velocity components.

(c) Euler angle components. (d) Angular velocity components.

Figure 7. Parameter profiles for minimum time trajectory.

SBMPO is also capable of generating time-optimal, collision-free trajectories when in cluttered environments,
which is desirable for the potential application of the algorithm to orbital debris navigation and removal.
Shown in figures 5(b) and 7, simulation results of minimum time planning in cluttered environments demon-
strate the capability of SBMPO to generate feasible rendezvous trajectories in the presence of obstacles. In
this simulation, seven randomly-sized and randomly-positioned spherical objects were included as obstacles
impeding the path toward the target. As predicted, the resultant minimum time trajectory corresponds
to the optimal bang-bang control sequence with some expected divergence due to the presence of impeding
obstacles. The collision-free rendezvous trajectory, corresponding to a path length of 179.23m, was generated
in 2.233s.
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V. Conclusion

This paper has presented a sampling-based approach to six-DOF spacecraft rendezvous trajectory plan-
ning for orbital debris mitigation. The trajectory planning was achieved via Sampling-Based Model Predic-
tive Optimization (SBMPO), a sampling-based algorithm that operates within the system input space.

Facilitating the efficiency of the randomized A* algorithm, this paper presented the construction of two
appropriate, optimistic A* heuristics that are based on the solutions to the minimum distance and minimum
time control problems. These heuristics enable rapid computation of rendezvous trajectories that end in zero
relative velocity.

Considering an obstacle-free planning environment, SBMPO was applied to the spacecraft relative motion
model to determine a rendezvous-feasible, minimum distance trajectory. The presentation of the obstacle-
free simulation in this paper served to demonstrate the effectiveness of the optimistic A* heuristic and as a
comparative baseline.

A necessity when used in orbital debris mitigation missions, SBMPO was demonstrated to be capable
of generating rendezvous trajectories in the presence of known obstacles. By implementing a well-developed
minimum time heuristic, the algorithm rapidly converged to an optimal solution trajectory that accomodates
the rendezvous scenario. Furthermore, the computational performance, despite the obstacles, was comparable
to that of obstacle-free planning.

When planning in the presence of obstacles, the efficiency of the algorithm was, in part, due to the use of
the imminent collision detection method that is highlighted in figure 4(b). Although not explicitly presented
in the results, it should be noted that this collision detection method may be most effective when deployed
in scenarios with a high population and/or high density of obstacles because the number of nodes explored
is reduced when imminent collision detection is employed.

Based on the computational quickness of the algorithm, this approach is a likely candidate for use in
real-time guidance and navigation. Lending to the viability of future autonomous orbital debris removal
missions, the computationally rapid results shown in this paper indicate the promising potential for the
deployment of SBMPO in autonomous rendezvous and docking problems.

Future work will focus on the implementation of rapid replanning in the algorithm, the identification
of planning issues associated with onboard perception of obstacles, and the development of additional op-
timization metrics, such as minimum fuel consumption. Additionally, future study will investigate unique
planning issues associated with spacecraft rendezvous and docking, such as thruster plume impingement and
accommodating additional environmental constraints.

Appendix

Table 2. Spacecraft Characteristics

Parameter Value

Length 1.0 m

Width 1.0 m

Height 1.0 m

Mass 100.0 kg

Moment of Inertia X 16.67 kg-m2

Moment of Inertia Y 16.67 kg-m2

Moment of Inertia Z 16.67 kg-m2

Number of Thrusters 6

Maximum Thrust Per Axis 1.0 N

Number of Reaction Wheels 3

Rotation Wheel Maximum Torque 0.055 Nm
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