# Reusable Suborbital Market Characterization

Prepared by The Tauri Group for Space Florida

March 2011



### Introduction

 Purpose: Define and characterize the markets reusable suborbital vehicles will address

#### Goals

- Define market categories
- + Identify market drivers
- + Characterize current activities
- + Provide basis for future market forecasting (Note that this study is not a forecast)

#### **Benefits**

- + Shared understanding improves quality and productivity of industry discourse
- + A consistent taxonomy enables communications across the community, with Congress, press, and investors
- + Accessible information helps industry participants assess opportunities, plan and coordinate activities, seek funding, and budget

### Agenda

- + Methodology
- Suborbital spaceflight attributes and vehicles
- Value proposition
- Characterization and analysis of markets
  - + Commercial human spaceflight
  - + Basic and applied research
  - + Aerospace technology test and demonstration
  - + Remote sensing
  - + Education
  - + Media & PR
  - + Point-to-point transportation
- Conclusions



### Methodology

- Literature review and data collection
  - + Articles, reports, and publications
  - + Available launch and research datasets
  - + Applicable payloads
  - + Initial customers
- → Interviews
  - + Researchers
  - + Launch service providers
  - + Funding agencies
  - + Potential commercial customers
  - + Users

- → Analysis and findings
  - + Vehicles
  - + Payload types
  - + Markets
    - + Opportunities
    - + Challenges
    - + Users
    - + Economic buyers



### Reusable Suborbital Vehicles

Industry catalyzed by Ansari X PRIZE, won in 2004 by SpaceShipOne

→ Of vehicles under development, 5 vehicles submitted data to NASA

Flight Opportunities program

- + SpaceShipTwo, Virgin Galactic
- + New Shepard, Blue Origin
- + Xaero, Masten Space Systems
- + Lynx, XCOR Aerospace
- + SuperMod, Armadillo Aerospace
- → Other vehicles have been announced, including those potentially in development by Sierra Nevada, EADS, Dassault Aviation, Rocketplane, Copenhagen Suborbitals

### Reusable Suborbital Spaceflight Attributes

- Vehicles typically cross the threshold of space (~100km/~62 mi)
- Safe for human transportation
- 1 4 minutes of microgravity
- Traverses upper atmospheric regions
- Substantially reduces cost for space access
- Anticipation of frequent fights
- Opportunity for satellite launch
- Several companies have received deposits
  - + Virgin Galactic: 390 customers, \$50 million
  - + XCOR: \$50 million wet leases











**Proprietary** 

www.taurigroup.com 6

### Reusable Suborbital Value Proposition

- Least expensive access to space (potential order-ofmagnitude reduction per unit mass)
- Frequent flights
- Can carry humans
- Return capability
- Potential for launch on demand
- → Commercial providers
  - + Customer oriented
  - + Flexible

- → Longer duration microgravity than
  - + Drop towers
  - + Parabolic flights
- → Larger payload capacity than
  - + Sounding rockets
  - + Drop towers
- → Higher quality microgravity than
  - Parabolic flights
- → Gentler ride than
  - Sounding rockets

### **Defining Suborbital Spaceflight Markets**

#### **MARKET NAME**

Submarket Submarket Submarket Market definition here. Markets are defined based on similar purpose, activities, and customers (both users and economic buyers)

- ★ Each market characterized in terms of
  - + Opportunities provided to customers by reusable suborbital spaceflight
  - + Challenges to market growth
  - + Users of spaceflight
  - + Economic buyers of spaceflight
    - + Space agencies, military organizations, civil government agencies, colleges and universities, K-12 schools, grant-making foundations, commercial firms, space firms, not-for-profits / NGOs, individuals
    - + As markets evolve over time, users and economic buyers may change



### **Suborbital Markets**

#### **COMMERCIAL HUMAN SPACEFLIGHT**

Individuals
Corporate sales
Raffles, contests, and promotions
In-space personnel training

### AEROSPACE TECHNOLOGY TEST AND DEMONSTRATION

Demonstrations requiring space/launch environment
Hardware qualification and test
Program management training

#### **EDUCATION**

K-12 education

Post graduate education and training
University research and educational missions

#### POINT-TO-POINT TRANSPORTATION

Fast package delivery
High-speed passenger transportation (civil)
High-speed troop transportation (military)

#### **BASIC AND APPLIED RESEARCH**

Biological and physical R&D
Earth science
Space science
Human research

#### **REMOTE SENSING**

Commercial earth imagery
Civil earth imagery
Military surveillance

#### **MEDIA & PR**

Film and television

Media, advertising, and sponsorship

Public relations and outreach



Proprietary



### **Commercial Human Spaceflight**

#### COMMERCIAL HUMAN SPACEFLIGHT

Individuals
Corporate sales
Raffles, contests, and promotions
In-space personnel training

#### +Opportunities

- New and unique offering
- More affordable, easier access to space
- Networking / prestige for early customers
- May lead to long-term applications like adventure sports

#### +Challenges

- + High costs
- + Real and perceived safety risks
- Uncertainty about regulatory requirements

# Human spaceflight experiences for tourism or training

#### → Users include

- + Space tourists
- Professional in-space personnel (astronauts, crew)
- → Economic buyers
  - Individuals (High and ultra-high networth individuals, space enthusiasts)
  - + Space agencies
  - + Space firms
  - + Commercial firms

### **Basic and Applied Research**

#### **BASIC AND APPLIED RESEARCH**

Biological and physical R&D Earth science **Space science** Human research

Basic and applied research in a number of disciplines, leveraging the unique properties of and access to the space environment and microgravity

#### +Opportunities

- + Access to space
- + Quality microgravity of meaningful duration
- + Frequent flight opportunities
- + Within important funding thresholds
- + Broad range of feasible experiments
  - + Payload recovery
  - + Large payloads
  - + Humans and equipment together
  - + Sensitive equipment and instrumentation

#### + Challenges

- + Duration is not suitable for all types of space research
- + Frequency of flight opportunities not sufficient for all research objectives
- + Still expensive, with limited access, compared to most non-space research environments

#### +Users include

- + Scientists and researchers (includes in-space researchers)
- + Engineers and technologists
- + Graduate students
- + Students and teachers

#### +Economic buyers

- + Space agencies
- + Civil government agencies (R&D agencies)
- + Colleges and universities
- + Not-for-profits / NGOs
- + Grant-making foundations
- + Commercial firms
- + Military organizations
- + K-12 schools

### **Basic and Applied Research**

#### **BASIC AND APPLIED RESEARCH**

## Biological and Physical R&D

- Biotechnology
- Animal biology
- Cellular biology
- Microbiology
- Plant biology
- Fluid physics
- Fundamental physics
- Particle conglomeration
- Combustion science
- Macromolecular crystal growth
- Plasma physics
- Materials science and research

#### **Space Science**

- Heliophysics
- Astrophysics
- Planetary science

#### **Earth Science**

- Atmospheric science
- Weather
- Climate variability and change
- Carbon cycle and ecosystems
- Water and energy cycles
- Earth surface and interior
- Oceanography

#### **Human Research**

- Large population medical research
- Space radiation
- Human health countermeasures
- Exploration medical capability
- Behavioral health and performance
- Space human factors and habitability



### **Basic and Applied Research Submarkets**

#### **Earth Science**

- Atmospheric composition
- Weather
- Climate variability and change
- Carbon cycle and ecosystems
- Water and energy cycles
- Earth surface and interior

#### +Opportunities:

- + Unique and repeated access to mesosphere, thermosphere and lower ionosphere
- + Resolution / field of view niche between aerial and satellite
- + Challenges
  - + Limited locations
  - + Capabilities of existing aerial, space systems

#### **Biological and Physical R&D**

- Biotechnology
- Animal biology
- Cellular biology
- Microbiology
- Plant biology
- Fluid physics
- Fundamental physics
- Particle conglomeration
- Combustion science
- Macromolecular crystal growth
- Plasma physics
- Materials science and research

#### + Opportunities

- + Removal of gravity from complex systems
- + Exposure to vacuum and radiation
- + Challenges
  - + Limited timeline, frequency for some experiments



### Basic and Applied Research Submarkets

#### **Space Science**

- Heliophysics
- Astrophysics
- Planetary science

#### + Opportunities

- + Access to observations uncompromised by atmospheric disturbance
- + Space weather measurements
- + Access to particular wavelengths

#### + Challenges

- + Short timeframe for observation
- + Precise pointing required
- + Relatively expensive compared to terrestrial options

#### + Opportunities

- + Sufficient time to practice / demonstrate in-space life saving procedures
- + Easy measurement of physiological mechanisms
- + Hyper / micro gravity transition
- + Large population datasets (better reflecting general population)
- + Repeated measurements of the same individual
- + Capacity for large imaging equipment

#### + Challenges

- + Relatively few experiments designed that focus on general human health, rather than astronaut health
- + Participation of spaceflight customers, crew, and providers

#### **Human Research**

- Large population medical research
- Space radiation
- Human health countermeasures
- Exploration medical capability
- Behavioral health and performance
- Space human factors and habitability

### **Aerospace Technology Test and Demonstration**

### AEROSPACE TECHNOLOGY TEST AND DEMONSTRATION

Demonstrations requiring space/launch environment
Hardware qualification and test
Program management training

Aerospace engineering to advance technology maturity or achieve space demonstration, qualification, or certification

#### +Opportunities

- + Suborbital space qualification and testing can reduce cost and accelerate TRL advancement
- + Overcomes "chicken and egg" problem of being demonstrated in space
- + Potential value to all space organizations
- + Micro / nano satellite launch
- More hands-on space project management

#### +Challenges

- + Suborbital provides important, but limited analog to orbital environment
- + Extensive terrestrial test facilities exist

#### +Users include:

- + Engineers and technologists
- + Scientists and researchers
- + Graduate students
- → Economic buyers
  - + Space agencies
  - + Military organizations
  - + Space firms
  - + Colleges and universities

### Remote Sensing

#### **REMOTE SENSING**

Commercial earth imagery
Civil earth imagery
Military surveillance

#### +Opportunities

- Resolution / field of view niche between aerial and satellite
- + Safe and responsive intelligence, surveillance, and reconnaissance
- + Micro / nano satellite launch

#### +Challenges

- + Limited locations
- Robust capabilities of existing systems
  - Aerial and satellite for civil and commercial markets
  - + Satellite and UAV for military applications (also new ISR rocket in development)

Acquisition of imagery of the Earth and Earth systems for commercial, civil government, or military applications

#### + Users include

- + Current users of aerial / satellite remote sensing
- + Warfighters
- + Economic buyers
  - + Space agencies
  - + Civil government agencies (NOAA, USGS, resource management agencies)
  - + Commercial firms (agricultural, resource exploration)
  - + Military organizations

### **Education**

#### **EDUCATION**

K-12 education

Post graduate education and training University research and educational missions Providing opportunities to K-12 schools, colleges, universities, and graduate programs to increase access to and awareness of space

#### +Strengths

- + Direct access to space
- Allows graduate students timely, predictable data for theses
- + Within K-12, undergraduate education budgets
  - + Within range of existing expenditures
  - + Space field trip for 200 students to the Challenger Center, MA: \$4,000

#### +Challenges

- + Competing with other education priorities
- + K-12 spending has tight upper limits per school
- + Integration with state and federal testing and required curricula
- + Reliance on availability of secondary and tertiary payloads may limit opportunities, control

#### +Users include

- + Graduate students
- + Students and teachers
- +Economic buyers
  - + Space agencies
  - + Civil government agencies (education, other STEM related agencies)
  - + Colleges and universities
  - + K-12 schools
  - + Grant-making foundations

### Media and PR

#### **MEDIA & PR**

Film and television Media, advertising, and sponsorship **Public relations and outreach** 

Using space to promote products, increase brand awareness, or film space-related content

#### +Strengths

- + Space images and associations have appeal
- + Small existing market for video on parabolic flights

#### +Challenges

- + Scheduled events required in advance for promotion and planning
- + Limited "eyeballs" for space launches
- + Commercial launches to date have not attracted substantial or mainstream advertising
- + In-space filming competes with CGI

#### → Users include

- + Content developers
- + Communications professionals

#### + Economic buyers

- + Commercial firms (advertising, PR agencies and clients; studios and production companies)
- + Colleges and universities



### **Point-to-Point Transportation**

#### POINT-TO-POINT TRANSPORTATION

Fast package delivery High-speed passenger transportation (civil) **High-speed troop transportation (military)** 

Future transportation of cargo or humans between different locations

#### +Opportunities

- + Reduced air time for transportation of cargo or humans
- +Challenges
  - + Infrastructure and vehicle development required
  - + Uncertainty about regulatory requirements
  - + Global overnight possible with "merely" supersonics
  - + Air time not always the driver of total travel time

#### → Users include

- + Space tourists
- + Warfighters
- + Couriers
- + Travelers
- + Economic buyers
  - + Civil government agencies
  - + Military organizations
  - + Commercial firms (Logistics companies)
  - + Individuals

### Conclusions

- Significant opportunities across all markets
  - + Clear and immediate benefits for entities already engaged in space activities, particularly in research and aerospace technology markets
  - + Potential to reach new customers, particularly in commercial human spaceflight and education markets
- + Challenges
  - + Cost, while much lower than existing access to space, remains high
  - + In many markets there are competing alternatives
- → Growth in interest from potential economic buyers requires relationship building and education
  - + Educating potential customers on value of space
  - + Education within the space community on different customer needs
- → Value proposition is relative to the market, alternatives, and particular customers
- Thank you to Space Florida



### Contact

- Carissa Christensen, Managing Partner
  - + carissa.christensen@taurigroup.com
- → Paul Guthrie, Senior Analyst / Project Lead
  - + paul.guthrie@taurigroup.com
- → Jason Hay, Senior Analyst
  - + Jason.hay@taurigroup.com
- → Rachael Graham, Research Assistant
  - + Rachael.graham@taurigroup.com

The Tauri Group 675 N. Washington St., Suite 220 Alexandria, VA 22314 www.taurigroup.com 703-683-2883

