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The Optimal Allocation of Prizes in Contests

Abstract: We study a contest with multiple (not necessarily equal) prizes.

Ex-ante symmetric, risk-neutral contestants have independently distributed

private information about an ability parameter that a¤ects their costs of

bidding. The contestant with the highest bid wins the …rst prize, the con-

testant with the second-highest bid wins the second prize, and so on until

all the prizes are allocated. All contestants incur their respective costs of

bidding. The contest’s designer maximizes the expected sum of bids. Our

main results are: 1) We display symmetric bidding equilibria for contestants

with linear, convex or concave cost functions. 2) If the cost functions are

linear or concave, then, it is optimal for the designer to allocate the entire

prize sum to a single ”…rst” prize. 3) We give a necessary and su¢cient

condition ensuring that several prizes are optimal if contestants have con-

vex cost functions. 4) Even if the designer can use instruments that exclude

types with relatively low ability (whose increased bidding cause the bene…t

of having more prizes), the award of several prizes is advantageous.

( JEL: D44, J31, D72, D82)

1. Introduction

In 1902 Francis Galton posed the following problem:

”A certain sum, say £100, is available for two prizes to be awarded

at a forthcoming competition; the larger one for the …rst of the com-

petitors, the smaller one for the second. How should the £100 be

most suitably divided between the two ? What ratio should a …rst

prize bear to that of a second one ? Does it depend on the number of

competitors, and if so, why ?” Galton (Biometrika, Vol.1, 1902)
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In his article Galton proposes a ratio of 3 to 1 to the above question. Since

Galton does not explicitly state what is the contest designer’s goal, his answer is

somewhat arbitrary. Nevertheless, his work is important for it pioneered both the

scienti…c literature on contests and the use of the so called order statistics1.

Contests are situations in which agents spend resources in order to win one

or more prizes. A main feature is that, independently of success, all contes-

tants bear some costs. Many multiple-prize contests arise naturally2, while others

are designed in order to achieve speci…c goals. The prevalence of multiple-prize

contests is obvious: employees spend e¤ort in order to be promoted in organiza-

tional hierarchies, which often consist of several types of well-de…ned positions;

students compete for grades in exams3; in procurement contests runners-up of-

ten serve as ”second sources”; in proportional parliamentary systems politicians

compete for ranked places on the party’s list4; athletes compete for gold, silver

and bronze medals, or for monetary prizes; architectural competitions for promi-

nent structures attract several designs by o¤ering substantial monetary prizes5;

young pianists compete for the …rst, second and third prizes in the Rubinstein in-

ternational competition, etc...Of great interest are also technological inducement

prizes o¤ered to individuals or groups who provide best entries in a contest, or

13 is the limit when the number of contestants (who have normally distributed abilities) goes

to in…nity of the ratio between 1) the expected di¤erence between the value of the highest order

statistic and the second highest, and 2) the expected di¤erence between the value of the highest

order statistic and the third highest statistic. For relations involving order statistics and their

applications see Arnold and Balakrishnan (1989) and Shaked and Shantikumar (1994).
2e.g., animals compete for territories or mates of di¤erent qualities.
3At least in the U.S. many professors grade on a curve that allocates a …xed percentage of

A’s, B’s, C’s, D’s and F’s.
4in the U.S., the vice-president job is often considered to be a consolation prize.
5For example, designers for the German pavillion at the EXPO 2000 in Hannover competed

over 7 prizes of DM 161000, DM 119000, DM 91000, DM 63000, DM 49000, DM 42000, DM

35000. In this kind of competitions, the actual designer need not be one of the prize winners.
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who …rst meet some speci…ed technical goal. Here are a few examples for the ”best

entries” type6: The European Information Technology Society annually awards

three grand prizes worth 200000 euros each7 for ”novel products with high infor-

mation technologies content and evident market potential”; The FCC’s Pioneer

Preference Program o¤ered guaranteed slices of spectrum to companies that de-

veloped and implemented innovative communication services and technologies8;

The privately funded Loebner prize is annually awarded to the computer program

that is the most ”human” in its responses to inquiries.

In the technological examples above, the designer’s goal is not to achieve the

highest possible top performance (or some pre-speci…ed level of that performance),

but rather to induce a general increase of activity in the speci…c …eld9. Similarly,

professors wish to maximize the expected learning e¤ort made by their students10,

organizers of athletic or artistic competitions often need to maximize average

6The most famous example for the ”speci…ed technical goal” type is surely the British Lon-

gitude Act, issued in 1714, which speci…ed three prizes (£ 20000, £15000, £10000; these are

equivalents of millions of today’s dollars) for methods to determine longitude in varying degrees

of accuracy (see Sobel, 1995). For more recent examples, such as the Feynman Prize for technical

progress in nanotechnology, or the super e¢cient refrigerator prize, see Windham (1999).
7There are also 20 prizes worth 5000 euros each.
8Three companies were o¤ered pioneer status in 1992. The program probably made sense

in an era where spectrum allocation was done by lottery or bureaucratic process. Congress

terminated the programme in 1997, after the advent of spectrum auctions.
9Another well known example of this type are the early aviation prizes, o¤ered to stimulate

the ‡edgling aeronautic industry. Between the …rst ‡ight by the Wright brothers and 1929, over

50 major prizes were o¤ered by governments, individuals and corporations. In 1926-7 alone,

Daniel Guggengeim o¤ered more than $ 2.5 million in prizes.
10Imagine an exam where it is announced that the top student will get an A while the rest

will fail. It seems obvious that most students will not bother to learn at all, a rather undesirable

outcome. A similar idea can be found behind the award of tenure to more than one assistant

professor.
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performance (or some related measure) in order to thrill audiences, and local

authorities that organize gardening competitions wish to improve the community’s

appearance .

Most of the literature (see references below) has treated contests where a

unique prize is awarded. Intuitively, the award of a single prize seems consistent

with a general intuition about the e¢ciency of rewarding only the best (and sup-

posedly ablest) competitor11. But, given the wealth of real-life multi-prize exam-

ples, it is of interest to o¤er a rationale for both winner-take-all and multiple-prize

contests in a single, integrated model. Speci…cally, we address Galton’s problem

in the following framework: Several risk-neutral agents engage in a contest where

multiple prizes with known and common values are awarded. Each contestant

i submits a bid (or undertakes an observable ”e¤ort”): The contestant with the

highest bid wins the …rst prize, the contestant with the second-highest bid wins

the second prize, and so on until all the prizes are allocated. All contestants

(including those that did not win any prize) incur a cost that is a strictly increas-

ing function of their bid. This function is common knowledge. We di¤erentiate

among the cases where the cost function is, respectively, linear, concave or convex

in e¤ort. The cost function of contestant i also depends on a parameter (say ”abil-

ity”) that is private information to that player. The main assumption we make

is one of separability between ability and bid in the cost function. The function

governing the distribution of abilities in the population is common knowledge,

an abilities are drawn independently of each other12. Each contestant chooses

11So called ”winner-take-all” contests are the subject of an entertaining book by Frank and

Cook (1995), but many of their examples are in fact multi-prize contests.
12It seems reasonable to assume the existence of a ”natural” distribution of abilities, out

of which drwas are taken. The independence assumption is problematic in some models with

endogenous entry. Both assumptions were postulated by Galton who considered independent

draws from the normal distribution, and they allow us to explicitly compute symmetric equilibria

5



his bid in order to maximize expected utility (given the other competitors’ bids

and given the values of the di¤erent prizes). The goal of the contest designer is

to maximize the total expected e¤ort (i.e., the expected sum of the bids) at the

contest13. The designer can determine the number of prizes having positive value

and the distribution of the …xed total prize sum among the di¤erent prizes.

Given the above assumptions, we display symmetric bidding equilibria for any

number of prizes and contestants with linear, concave or convex cost functions.

In order to have a less technical exposition, we focus however on the designer’s

problem in the case where she can award two (potentially unequal) prizes, and

where there are at least three contestants. Compared to one-prize contests, this

case already displays the main ingredient for complexity in bidding14. It will

become clear that none of our qualitative results changes if we allow for more

than two prizes.

In the framework of our model, we can answer Galton’s questions as follows:

1) If the contestants having linear or concave cost functions it is optimal for the

designer to allocate the entire prize sum to a single ”…rst” prize. 2) We give a

by analyzing one di¤erential equation instead of a complex system.
13In some situations that …t our model, the designer has other goals. For example, in a

lobbying model the contest designer might not be the bene…ciary of the ”wasteful” lobbying ac-

tivities, and she might wish to minimize them. Our analysis can be easily extended to other goal

functions since we explicitly display bidding equilibria (that are independent of the designer’s

goal).
14If there is only one prize, or if there are several equal prizes, each contestant perceives two

payo¤-relevant alternatives: I win a prize, or I win nothing. Hence, bids are determined by the

di¤erence in expected payo¤ between those two alternatives (the same logic applies if there are

two unequal prizes but only two contestants). If there are at least two unequal prizes and at

least three contestants, each contestant perceives at least three payo¤ relevant alternatives (I

win the …rst prize, I win the second prize,..., I win nothing). Bids are now determined by several

di¤erences in expected payo¤s.
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necessary and su¢cient conditions ensuring that (at least) two prizes are optimal

if the contestants have convex cost functions. Depending on the parameters, the

optimal prize structure may involve then several equal prizes or di¤erent prizes

whose ratio can be computed. 3) If the contestants have convex cost functions,

several prizes may be optimal even if the contest designer can use instruments

(such as entry fees or minimum bid requirements) that exclude types with rela-

tively low abilities.

We now brie‡y describe the intuition behind our results. The equilibrium bid

depends on the contestant’s cost (and hence on his ability), on the probabilities

of winning di¤erent prizes, and on the prizes’ values15. Moreover, the equilibrium

bid is increasing in ability. Since a player with higher ability has a higher chance

to win the …rst prize, increasing the value of the …rst prize by one penny causes an

overall increase in equilibrium bids (and the increase is higher for higher abilities).

In contrast, the probability of getting the second prize is not monotone in ability16,

and therefore the marginal e¤ect of the second-prize (and of all other prizes but the

…rst) is ambiguous. The marginal e¤ect of the second prize on the equilibrium bid

function is in fact negative for players with high enough abilities, but it is positive

for middle and low ability players. Moreover, for contestants with abilities below

a certain threshold, the (positive) marginal e¤ect of the second prize is higher

than the marginal e¤ect of the …rst prize, since these types are more likely to get

the second prize rather than the …rst. The relevant variable for a designer who

wants to maximize the average (i.e., expected) bid of each contestant becomes the

average di¤erence between the marginal e¤ects of the second prize and the …rst

15If there are p prizes, the bid function involves linear combinations of p order-statistics. The

equilibrium bid for contestants with concave or convex cost functions is obtained by applying

the inverse of the cost function to the equilibrium bid for linear cost functions.
16For example, both the lowest and highest ability types have a zero probability of getting

the second prize if there are at least three contestants.
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prize, respectively. If the average di¤erence is negative the designer should award

only a unique (…rst) prize - this turns out to be the case for contestants with linear

or concave cost functions, no matter what the (common) distribution of abilities

is17. The opposite can happen only for convex cost functions, where the positive

e¤ect of further prizes on ”middle ability” types can more than compensate the

decreased bidding of the ablest competitors. Two or more prizes may be optimal

in this case. The optimal allocation of the prize sum among the several prizes

depends then on the number of contestants, the distribution of abilities, and on

the e¤ort cost function. Finally, we show by way of example that, for convex

cost functions, the bene…cial e¤ect of additional prizes persists even if types of

relatively low ability can be excluded by instruments as entry fees or minimum

bid requirements.

The paper is organized as follows: In Section 2 we present the contest model

with multiple prizes and private information about a parameter (e.g. ability)

entering cost functions. In Section 3 we focus on linear cost functions and we …rst

derive the symmetric equilibrium bid functions. Then we formulate the contest

designer’s problem and we prove that it is optimal to award a single prize. In

Section 4 we use the result obtained above in order to study the optimal prize

structure for contestants with concave and convex cost functions. We illustrate

the non-trivial optimal prize structure in an example with convex cost functions.

In Section 5 we brie‡y study the e¤ects of entry fees. In Section 6 we gather

concluding comments. All proofs appear in an Appendix.

17A-priori it seems that the sign of the average di¤erence will depend on features of the

distribution of abilities, such as, say, the relative weight of ”middle” types.
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1.1. Related Literature

The economic literature on contests is very large, and most (but not all) of it has

focused on the case of one prize18. Contest models with complete information

about the value of a unique prize include, among others: Tullock (1980), Var-

ian (1980)19, Moulin (1986), Dasgupta (1986), Hillman and Samet (1987), Dixit

(1987), Snyder (1989), Ellingsen (1991), Baye et. al. (1993), Baye et. al. (1996).

The last paper o¤ers a complete characterization of equilibrium behavior in the

complete information all-pay auction with one prize20. All-pay auction models

with incomplete information about the prize’s value to di¤erent contestants in-

clude Weber (1985), Hillman and Riley (1989), Amann and Leininger (1996), and

Krishna and Morgan (1997). Equilibrium uniqueness in such models with two

players is treated in Amann and Leininger (1996) and Lizzeri and Persico (2000).

Research tournaments models with one prize are discussed in Wright (1983),

Taylor (1995) and Fullerton and McAfee (1999).

The use of contests in order to extract e¤ort under ”moral hazard” conditions

has been …rst emphasized by Lazear and Rosen (1981). Their work has been ex-

tended in many directions, by, among others, Green and Stokey (1983) , Nalebu¤

and Stiglitz (1983), and Rosen (1986)21. A common assumption in these papers

is that the observed output is a stochastic function of the unobservable e¤ort. All

18Applications have been made to rent-seeking, lobbying, technological races, political con-

tests, promotions in labor markets, trade wars, military and biological wars of attrition, etc...
19Varian’s is a model of sales, in fact a mirror-image of an all-pay auction. The bidding

direction is reversed, as the …rm setting the lowest sale price gets the extra demand of informed

customers.
20Contrary to earlier erroneous claims, there are many equlibria.
21Ehrenberg and Bognanno (1990) and Knoeber and Thurman (1994) test several predictions

of this body of theory using observed prize structures in professional golf tournaments, and

reward schemes for broiler producers, respectively.
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agents have the same known ability. Lazear and Rosen derive the optimal prize

structure in a contest with two workers and two prizes and compare it to optimal

piece rates. Krishna and Morgan (1998) assume that the contest designer has

a …xed prize purse and study the optimal allocation of the purse among several

non-negative prizes in contests with 2, 3 or 4 contestants.

Our model is isomorphic to a ”private values” all-pay auction with several

(potentially unequal) prizes. Broecker’s (1990) model of credit markets has sev-

eral features of an all-pay auction with as many prizes as contestants22. Wilson

(1979) and Anton and Yao (1992) study split award auctions that can be also

interpreted as contests with several prizes23. Clark and Riis (1998) study contests

with multiple identical prizes under complete information and compare simulta-

neous versus sequential designs from the point of view of a revenue-maximizing

designer. Bulow and Klemperer (1999) study an incomplete information model of

a war of attrition with K identical prizes and N +K contestants.

Barut and Kovenock (1998) study a complete information multi-prize contest

with heterogenous prizes24. In this symmetric, complete information environment,

they show that the revenue maximizing prize structure allows any combination of

K¡ 1 prizes, where K is the number of contestants. (In particular, allocating the

entire prize sum to a unique …rst prize is optimal.)

Our paper is close in focus to Glazer and Hassin (1988). Besides studying the

symmetric equilibria of a multi-prize complete information model, these authors

also propose an incomplete information model that is more general than ours

since it allows for both cost functions that are not necessarily separable in ability

22With only two banks his model is isomorphic to Varian’s (1980) model of sales.
23Anto and Yao also mention examples such as split home schedules of professional sport

franchises wishing to maximize amenities o¤ered by several municipalities.
24In our terminology, players have linear cost functions and the same, common-knowledge

ability.
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and bid and for risk averse contestants. But this general structure is not easily

amenable to analysis, and, in order to obtain results, the authors further assume a

separable and linear cost function such that the lowest ability type has an in…nite

cost of bidding, a uniform ability distribution, risk neutral contestants, and no

entry fees. With these assumptions, they show that a unique …rst prize is optimal.

2. The Model

Consider a contest where p prizes are awarded. The value of the j¡ th prize is Vj,
where V1 ¸ V2 ¸ ::: ¸ Vp ¸ 0 . The values of the prizes are common knowledge.
We assume that

Pp
i=1 Vi = 1 - this is just a normalization.

The set of contestants is K = f1; 2; :::; kg. Without loss of generality we can
assume that k ¸ p (i.e., there are at least as many contestants as there are prizes).
At the contest each player i makes a bid xi: Bids are submitted simultaneously.

A bid xi causes a disutility (or cost) denoted by ci°(xi); where ° : R+ ! R+

is a strictly increasing function with °(0) = 0; and where ci > 0 is an ability

parameter25. Note that a low ci means that i has a high ability (i.e., lower cost)

and vice-versa.

The ability (or type) of contestant i is private information to i: Abilities are

drawn independently of each other from an interval [m; 1] according to the dis-

tribution function F which is common knowledge. We assume that F has a

continuous density F 0 > 0: In order to avoid in…nite bids caused by zero costs, we

assume that m; the type with highest possible ability, is strictly positive26.

25The treatment of the case in which i0s cost function is given by ±(ci)°(xi) , where ± is strictly

monotone increasing, is completely analogous. The main assumption here is the separability of

ability and bid.
26The case where m = 0 can be treated as well, but requires slightly di¤erent methods.

The choice of the interval [m; 1] is a normalization.
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The contestant with the highest bid wins the …rst prize V1. The contestant

with the second highest bid wins the second prize V2, and so on until all the prizes

are allocated27. That is, the payo¤ of contestant i who has ability ci , and submits

a bid xi is either Vj¡ci°(xi) if i wins prize j; or ¡ci°(xi) if i does not win a prize.
Each contestant i chooses his bid in order to maximize expected utility (given

the other competitors’ bids and the values of the di¤erent prizes). The contest

designer determines the number of prizes having positive value and the distribu-

tion of the total prize sum among the di¤erent prizes in order to maximize the

expected value of the sum of the bids
Pk
i=1 xi (given the contestants’ equilibrium

bid functions).

3. Linear Cost Functions

We assume here that the cost functions are linear, i.e., °(x) = x: The next

Proposition displays the symmetric equilibrium bid with two prizes and k ¸ 3

contestants28. In the Appendix we also provide the general formula for the equi-

librium bid functions with p > 2 prizes.

Proposition 3.1. Assume that there are 2 prizes, V1 ¸ V2 ¸ 0; and k ¸ 3

contestants. In a symmetric equilibrium29, the bid function of each contestant is

27If h > 1 bids tie for a prize, each respective bidder gets the prize with probability 1
h :

28As mentioned in the introduction, if there are only two contestants, the situation is isomor-

phic to the one where there is a unique prize whose value is equal to the di¤erence between the

two prizes. Hence, it is trivially true that awarding a unique prize is optimal for the contest’s

designer.
29It is not too di¢cult to show that this is the unique symmetric equilibrium. By analogy

to the properties of incomplete information pay-your-bid auction models with a continuum of

types, we conjecture that this remains the unique equilibrium even if asymmetric strategies are

considered. But a proof of such a claim (or the construction of a counter-example) is likely to

be very complex. The only known results show uniqueness for the two-bidders case (see Amman
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given by b(c) = A(c)V1 +B(c)V2; where:

A(c) = (k ¡ 1)
Z 1

c

1

a
(1¡ F (a))k¡2F 0(a)da (3.1)

B(c) = (k ¡ 1)
Z 1

c

1

a
(1¡ F (a))k¡3[((k ¡ 1)F (a)¡ 1]F 0

(a)da (3.2)

Proof. See Appendix

3.1. The Designer’s Problem

Let V2 = ® and V1 = 1 ¡ ®, where 0 · ® · 1
2
(since the second prize must

be smaller than the …rst). By Proposition 3.1, each contestant’s equilibrium bid

function is given by

b(c) = (1¡ ®)A(c) + ®B(c) = A(c) + ®(B(c)¡ A(c)):

The average bid of each contestant is given by

Z 1

m
(A(c) + ®(B(c)¡ A(c)))F 0(c)dc:

Since there are k contestants, the seller’s problem is:

max
0·®· 1

2

k
Z 1

m
(A(c) + ®(B(c)¡A(c)))F 0(c)dc

The above problem is equivalent to:

max
0·®· 1

2

®
Z 1

m
(B(c)¡ A(c)))F 0(c)dc (3.3)

The solution to Problem 3.3 is extremely simple: if the integral is positive,

then the optimal ® is 1
2
(i.e., award two equal prizes). Otherwise, the optimal ®

and Leininger, 1996 and Lizzeri and Persico, 1999)
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is zero (i.e., award a unique prize). A ”common-sense” conjecture is that the sign

of the integral will depend on the speci…c properties of the distribution function.

But Lemma 8.1 in the Appendix shows that the integral in Problem 3.3 is always

negative. Hence the solution to Problem 3.3 must be ® = 030: Thus we obtain:

Proposition 3.2. Assume that the designer can award at most two prizes, V1 ¸
V2 ¸ 0; and that there are k ¸ 3 contestants with linear cost functions. Then it
is optimal to allocate the entire prize sum to a single …rst prize.

It is important to note that the above result holds even if, a-priori, the seller

is allowed to award more than two prizes ( for the argument, see footnote 41 in

the Appendix.)

The following example illustrates Proposition 3.2. In particular, we give ex-

plicit formulas for the equilibrium bid functions when the distribution of abilities

is uniform.

Example 3.3. Assume that F (c) = 1
1¡mc ¡ m

1¡m ; i.e., abilities are uniformly

distributed on the interval [m; 1]: We obtain that:

A(c) = (
1

1¡m)
k¡1(1¡ k)(

k¡2X
s=1

(1¡ c)s
s

+ ln c)

B(c) = (
1

1¡m)
k¡1(k ¡ 1)[

k¡2X
s=1

(1¡ c)s
s

+ ln c

+(1¡ c)k¡2 +m(k ¡ 2)(
k¡3X
s=1

(1¡ c)s
s

+ ln c)]

30As noted in the introduction, we can easily deal with cases where the designer has other

goals. For example, if the designer wants to minimize the the expected sum of bids, it should

award two equal prizes, i.e., ® = 1
2 is optimal .
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Assume now that k = 3; m = 1
2
and F (a) = 2a¡ 1 (i.e., uniform distribution

on the interval [1
2
; 1]). The formulas above yield:

A(c) = ¡8 + 8c¡ 8 ln c
B(c) = 16¡ 16c+ 12 ln cZ 1

m
(B(c)¡ A(c))F 0(c)dc = 2

Z 1

1
2

(24¡ 24c+ 20 ln c)dc
= ¡14 + 20 ln 2 = ¡0: 137

:

A(c) - thick line ; B(c) - thin line; 1
2
(A(c) +B(c)) - dotted line

Note that the curve A(c) also describes the equilibrium bid when there is a

unique price V1 = 1: For comparison, we have also plotted the resulting equilib-

rium bid function when there are two equal prizes, V1 = V2 = 1
2
:

4. Concave and Convex Cost Functions

Assume now that a bidder with ability c has a cost function given by c° such that

°(0) = 0; °0 > 0: Let g = °¡1; and observe that g0 > 0:
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Proposition 4.1. Assume that there are 2 prizes, V1 ¸ V2 ¸ 0; and k ¸ 3

contestants. In a symmetric equilibrium, the bid function of each contestant is

given by b(c) = g[A(c)V1+B(c)V2]; where A(c) and B(c) are de…ned by equations

3.1 and 3.2, respectively.

Proof. See Appendix.

4.1. The Designer’s Problem

Let V1 = 1¡®; and V2 = ® , where 0 · ® · 1
2
: Analogous to the case of linear cost

functions, the designer’s revenue with concave or convex cost functions is given

by

R(®) = k
Z 1

m
g[A(c) + ®(B(c)¡A(c))]F 0(c)dc

and the designer’s problem is given by

max
0·®· 1

2

k
Z 1

m
g[A(c) + ®(B(c)¡ A(c))]F 0(c)dc

Roughly speaking, the main new e¤ects are due to the fact that the bene…cial

marginal e¤ect of the second-prize on middle and low ability players is ampli…ed

when contestants have convex cost functions, while the opposite occurs for concave

cost functions. We obtain the following results:

Proposition 4.2. Assume that the designer can award at most 2 prizes, V1 ¸
V2 ¸ 0; and that there are k ¸ 3 contestants with concave cost functions. Then
it is optimal to allocate the entire prize sum to a single …rst prize.

Proof. See Appendix.

Proposition 4.3. Assume that the designer can award at most 2 prizes, V1 ¸
V2 ¸ 0; and that there are k ¸ 3 contestants with convex cost functions. A
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necessary and su¢cient condition for the optimality of two prizes is given by

Z 1

m
(B(c)¡ A(c))g0(A(c))F 0(c)dc > 0 (4.1)

If condition 4.1 is satis…ed31 then, depending on the convexity of the cost function,

it is either optimal to award two prizes V1 = 1¡ ®¤ and V2 = ®¤, where ®¤ > 0 is
determined by the equationR0(®¤) = 0 , or to award two equal prizes, V1 = V2 = 1

2
:

Proof. See Appendix.

The basic intuition behind Proposition 4.3 generalizes to the case where the

designer is not constrained to award two prizes. If the cost function is ”convex

enough”, the optimal prize structure may involve up to k ¡ 1 di¤erent prizes.

Example 4.4. Let k = 3; m = 1
2
and F (a) = 2a ¡ 1 (i.e., uniform distribution

on the interval [1
2
; 1]). Let the cost function be c°(x) = cx2: We have °¡1(x) =

g(x) = x
1
2 and g0(x) = 1

2
x¡

1
2 : By the results in Example 3.3, we obtain:

A(c) = ¡8 + 8c¡ 8 ln c
B(c) = 16¡ 16c+ 12 ln c

B(c)¡A(c) = 24¡ 24c+ 20 ln c
g0(A(c)) =

1

2
(¡8 + 8c¡ 8 ln c)¡ 1

2Z 1

1
2

(B(c)¡ A(c))g0(A(c))F 0(c) =
p
2
Z 1

1
2

6¡ 6c+ 5 ln cq
(¡1 + c¡ ln c)

dc = 0: 19

31Note that the condition involves only primitives of the model: the ability distribution func-

tion, the cost function, and the number of contestants.
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B(c)¡ A(c) - thick line; g0(A(c)) - thin line

Note how the bene…cial e¤ect of the second price (in the interval where the

function B(c)¡A(c) is positive) gets ampli…ed by the high values of the function
g0: Numerical calculations reveal that ®¤ = 1

e
is an (approximate) solution to the

equation R0(®) = 0: Hence the optimal prize structure is V1 = 1¡ 1
e
¼ 0: 63, and

V2 =
1
e
¼ 0: 37. The ratio of prizes is V1

V2
= e¡1 ¼ 1: 71; and the di¤erence V1¡V2

is about one quarter of the prize sum.

5. Entry Fees

Contest organizers often use simple instruments such as entry fees or minimum bid

requirements32 in order to exclude low ability agents from the contest33. Assume

then that an entry fee E > 0 is imposed.
32For example, the FCC-organized contest to set the standard for high-de…nition television was

open to anyone with a $200.000 entry fee (see Taylor, 1995). All professional sport competitions

are restricted to athletes or teams that ful…ll a certain prespeci…ed standard.
33In models with endogenous participation such instruments can also control for the number of

contestants. Having less than the free-entry number of participants has been shown to be optimal

in the research contests studied by Taylor (1995) and Fullerton and McAfee (1999). Excluding

speci…c participants can also be bene…cial in complete information models with heterogenous

agents - see Baye et.al. (1993). In a winner-take-all, all-pay auction with incomplete information,

with ex-ante symmetric players and with a continuum of types it is never optimal to restrict the
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Let b denote the equilibrium bid function with linear costs and no entry fee

(see Proposition 3.1), and recall that b was determined using the condition that

the type with lowest ability (i.e., c = 1) bids zero (and makes zero pro…t). Clearly

such a type will not participate in a contest where an entry fee E > 0 has to be

paid, and therefore we need to modify here the boundary condition.

Assume then that an entry feeE > 0 is imposed. Solving a di¤erential equation

which is otherwise analogous to the one in the proof of Proposition 4.1, we obtain

the equilibrium of a two-prize contest where contestants have cost function c°

and where the designer imposes an entry fee E : types in an interval [m; cE]

participate34 and bid according to the bid function bE(c) = °¡1(b(c)¡ d); where
cE 2 [m; 1] and d ¸ 0 are determined by the zero-bid and zero pro…t conditions:

bE(cE) = 0 (5.1)

V1(1¡ F (cE))k¡1 + (k ¡ 1)V2F (cE)(1¡ F (cE))k¡2 ¡ cEbE(cE)¡ E = 0 (5.2)

Since by construction bE(cE) = 0 and since bE(cE) = 0 , °¡1(b(cE) ¡ d) =
0, b(cE)¡ d = 0;we can re-write the above conditions as:

b(cE)¡ d = 0 (5.3)

V1(1¡ F (cE))k¡1 + (k ¡ 1)V2F (cE)(1¡ F (cE))k¡2 ¡E = 0 (5.4)

number of contestants - this follows by the analysis in Bulow and Klemperer (1996) and by the

revenue equivalence theorem.
34We consider here the (non-trivial) case where the entry fee is not too large, so that at least

some types …nd it optimal to participate.
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The two equations above form a system of two equations in two unkowns,

which can be solved to obtain the equilibrium values for cE and d:

For linear cost functions, we have shown that a contest designer who cannot use

entry fees optimizes by allocating the entire prize sum to a single …rst prize. An

analysis which is similar to the one performed in the seminal studies of Myerson

(1981) or Riley and Samuelson (1981) shows that, with linear cost functions, a

contest with a single …rst prize and an (optimally set) entry fee35 is revenue-

maximizing among all feasible mechanisms36.

An interesting tension arises between the award of multiple prizes and entry

fees (or minimum bid requirements) since the bene…cial e¤ect of additional prizes,

i.e., increased bidding by low and middle ability types, is reduced if such types are

excluded. Hence, one may guess that even with convex cost functions, a second

prize becomes super‡uous for revenue purposes if entry fees (or minimum bids)

can be imposed. We conclude this section by displaying an Example showing that

this is not the case.

Example 5.1. Let k = 3; m = 1
2
, F (a) = 2a ¡ 1 and °(x) = x2: Let E · 1:

By Examples 3.3,4.4 and the above remarks we obtain that, in equilibrium ,

types in the interval [1
2
; 1 ¡

p
E
2
] pay the entry fee and bid according to bE(c) =p¡8 + 8c¡ 8 ln c¡ d; where d = 8 ln 2¡ 4pE¡ 8 ln(2¡pE): A numerical anal-

ysis reveals that the designer’s payo¤ decreases as a function of E: Hence, if the

designer awards a single prize the optimal entry fee is zero. But, by Example 4.4,

the designer can do better than that by awarding two prizes.

35This fee depends on the designer’s valuation for the prize, on the number of contestants and

on the distribution of abilities.
36i.e., mechanisms that are incentive compatible and individually rational.
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6. Concluding Comments

We have studied the optimal prize structure in multi-prize contests where risk-

neutral players have private information about their abilities. In order to max-

imize the expected sum of bids, the designer should organize a winner-take-all

contest if contestants have linear or concave cost functions. If the contestants

have convex cost functions, then two or more prizes may be optimal37. The right

proportion between the prizes’ values depends then on the number of contestants,

the distribution of abilities in the population, and on the exact form of the cost

function.

A relaxation of the risk-neutrality condition introduces a lot of complexity in

explicit computations of equilibria. But, assuming that equilibria can be com-

puted, we conjecture that arguments similar to those exhibited here can be used

to show the optimality of several prizes for su¢ciently risk-averse contestants.

Another interesting extension would be the study of several parallel contests

(with potentially di¤erent prize-structures), such that agents can choose where to

compete.

We come back now to Francis Galton who concluded his article with the fol-

lowing remark:

”I now commend the subject to mathematicians in the belief that

those who are capable, which I am not, of treating it more thoroughly,

may …nd that further investigations will repay trouble in unexpected

directions38” (Galton, 1902)

37Bulow and Klemperer (1999) report that Avinash Dixit o¤ers a $20 prize to the student

who continues clapping the longest at the end of his game theory course. In experimental tests

we established that pain is a highly convex function of clapping duration, and therefore we

recommend the award of several prizes.
38The challenge was immediately picked by the famous statistician Karl Pearson, at that time
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8. Appendix

Proof of Proposition 3.1: Assume that all contestants in the set Knfig bid
according to the bid function b, and assume that the bid function is strictly

monotonic and di¤erentiable. Player i’s maximization problem reads:

maxx[V1(1¡ F (b¡1(x)))k¡1 + (k ¡ 1)V2F (b¡1(x))(1¡ F (b¡1(x)))k¡2 ¡ cx]

Let y denote the inverse of b: Using strict monotonicity and symmetry, the

…rst order condition is:

1 = ¡(k ¡ 1)(V1 ¡ V2)y0 1
y
(1¡ F (y))k¡2F 0(y)¡

(k ¡ 1)(k ¡ 2)V2y0 1
y
F (y)(1¡ F (y))k¡3F 0(y)

Note that the right hand side of the FOC is a function of y only39.
39i.e., this is a di¤erential equation with separated variables.
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A contestant with the lowest possible ability c = 1 can either never win a prize

(if k > 2) or wins for sure the second prize (if k = 2): Hence the optimal bid of

this type is always zero, and this yields the boundary condition y(0) = 1:

Denote

G(y) = V1((k ¡ 1))
Z 1

y

1

t
(1¡ F (t))k¡2F 0(t)dt+

V2(k ¡ 1)
Z 1

y

1

t
(1¡ F (t))k¡3[1¡ (k ¡ 1)F (t)]F 0(t)dt (8.1)

The solution to the di¤erential equation with the boundary condition is given by:

Z 0

x
dt = ¡G(y) (8.2)

We obtain that x = G(y) = G(b¡1(x)); and therefore that b = G: Thus, the

bid function of every player is given by b(c) = A(c)V1 +B(c)V2; where:

A(c) = (k ¡ 1)
Z 1

c

1

a
(1¡ F (a))k¡2F 0(a)da

B(c) = (k ¡ 1)
Z 1

c

1

a
(1¡ F (a))k¡3[(k ¡ 1)F (a)¡ 1]F 0

(a)da

We now check that the candidate equilibrium function b is strictly monotonic

decreasing (it is clearly di¤erentiable). Note …rst that

A0(c) = ¡(k ¡ 1)1
c
(1¡ F (c))k¡2F 0(c) < 0

for all c 2 [m; 1):We have also

B0(c) = (k ¡ 1)1
c
(1¡ F (c))k¡3F 0(c)[(1¡ (k ¡ 1)F (c)]F 0(c)

Because V1 ¸ V2 we obtain for all c 2 [m; 1) :
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b0(c) = A
0
(c)V1 +B

0(c)V2

· V2(A
0(c) +B

0
(c))

= ¡V2(k ¡ 1)(k ¡ 2)1
c
F (c)(1¡ F (c))k¡3F 0(c))

< 0

Assuming that all contestants other than i bid according to b; we …nally need

to show that, for any type c of player i; the bid b(c) maximizes the expected utility

of that type. The necessary …rst-order condition is clearly satis…ed (since this is

how we ”guessed” b(c) to start with). We now show that a su¢cient second-order

condition (called ”pseudo-concavity”) is satis…ed. Let

¼(x; c) = V1(1¡F (b¡1(x)))k¡1+(k¡1)V2F (b¡1(x))(1¡F (b¡1(x)))k¡2¡ cx be
the expected utility of player i with type c that makes a bid x:We will show that

the derivative ¼x(c; x) is nonnegative if x is smaller than b(c) and non-positive

if x is larger than b(c): As ¼(x; c) is continuous in x; this implies that ¼(x; c) is

maximized at x = b(c). Note that

¼x(x; c) = ¡(k ¡ 1)(V1 ¡ V2)db¡1(x)dx
(1¡ F (b¡1(x)))k¡2F 0(b¡1(x))¡

(k ¡ 1)(k ¡ 2)V2 db¡1(x)dx
F (b¡1(x))(1¡ F (b¡1(x)))k¡3F 0(b¡1(x))¡ c:

Let x < b(c); and let bc be the type who is supposed to bid x; that is b(bc) = x:
Note that bc > c since b is strictly decreasing. Di¤erentiating ¼x(x; c) with respect
to c yields ¼xc(x; c) = ¡1 < 0: That is, the function ¼x(x; ¢) is decreasing in c.
Since bc > c;we obtain ¼x(x; c) ¸ ¼x(x; bc)
Since x = b(bc) we obtain by the …rst order condition that ¼x(x; bc) = 0; and

therefore that ¼x(x; c) ¸ 0 for every x < b(c): A similar argument shows that

¼x(x; c) · 0 for every x > b(c):

The symmetric equilibrium with p prizes:
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Fix agent i; and let Fs(a); 1 · s · p; denote the probability that agent i with
type a meets k ¡ 1 competitors such that s ¡ 1 of them have lower types, and

k ¡ s have higher types. Hence Fs is exactly the probability of winning the s0th
prize40. We have then

Fs(a) =
(k ¡ 1)!

(s¡ 1)!(k ¡ s)!(1¡ F (a))
k¡s(F (a))s¡1

The corresponding derivatives are given by

F
0
1(a) = ¡(k ¡ 1)(1¡ F (a))k¡2F 0(a) (8.3)

and by

F 0s(a) =
(k ¡ 1)!

(s¡ 1)!(k ¡ s)!(1¡ F (a))
k¡s¡1(F (a))s¡2F 0(a) (8.4)

¢[(1¡ k)F (a) + (s¡ 1)]

for s > 1. Note that A(c) =
R 1
c ¡1

a
F

0
1(a)da and that B(c) =

R 1
c ¡ 1

a
F

0
2(a)da:

Analogously to the case of two prizes, the equilibrium bid for any number of prizes

p > 2 and k ¸ p contestants with linear cost functions is given by:

b(c) =
pX
s=1

Vs ¢
Z 1

c
¡1
a
F

0
s(a)da (8.5)

The following technical Lemma is important since it is repeatedly used in the

proofs of Propositions 3.2, 4.2, 4.3:

40Recall that in equilibrium we expect i to bid more than competitors with higher types

(lower ability). For the relation between the probabilities Fs and the distribution of di¤erences

of successive order statistics (which were in fact Galton’s theme) see Chapter 2 in Arnold and

Balakrishnan (1989).
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Lemma 8.1. Assume that there are two prizes, V1 ¸ V2 ¸ 0; and let b(c) =

A(c)V1+B(c)V2 be the symmetric equilibrium bid function for k ¸ 3 contestants
having linear cost functions. Then the following properties hold:

1. A(1) = B(1) = 0

2. 8c 2 [m; 1); A(c) > 0; and A0(c) < 0

3. Let c¤ be such that F (c¤) = 1
k¡1 : Then B

0(c¤) = 0; B0(c) > 0 for all

c 2 [m; c¤) , and B0(c) < 0 for all c 2 (c¤; 1]

4. j B0(c) j>j A0(c) j for c in a neighborhood of 1:

5. B(m) < 0

6. For any k > 2;there exists a unique point c¤¤ 6= 1 such that A(c¤¤) = B(c¤¤):

7.
R 1
m(B(c)¡ A(c))F 0(c)dc < 041

Proof.

1. This is obvious by de…nition.

2. A(c) > 0 for c 2 [m; 1) is obvious by de…nition. Further we have A0(c) =
¡(k ¡ 1)1

c
(1¡ F (c))k¡2F 0(c) < 0 for all c 2 [m; 1) and A0(1) = 0:

3. B0(c) = (k ¡ 1)1
c
(1¡ F (c))k¡3F 0(c)[(1¡ (k ¡ 1)F (c)]

For c¤ such that F (c¤) = 1
k¡1 we obtain B

0(c¤) = 0: Moreover, B0(c) > 0 for

all c 2 [m; c¤) , and B0(c) < 0 for all c 2 (c¤; 1): Finally, B0(1) = 0:
41In order to prove that one prize is optimal even if the designer can award more than

two prizes, it is enough to show that for all s; 2 · s · p; it holds that
R 1
m
(
R 1
c
¡ 1
a(F

0
s(a) ¡

F
0
1(a))da)dc < 0 (see formulae 8.3-8.4 above). The proof here treats the case s = 2. The proofs

for the cases s > 2 are completely analogous.
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4. For for all c 2 [c¤; 1) we obtain that

j B0(c) j ¡ j A0(c) j
= ¡B0(c) +A0(c)
= (k ¡ 1)1

c
(1¡ F (c))k¡3F 0(c)(kF (c)¡ 2)

For k > 2 we obtain that j B0(c) j ¡ j A0(c) j is positive for c close enough
to 1 (since kF (c) > 2 for such types.)

5. We have

B(m) = (k ¡ 1)(
Z c¤

m

1

a
(1¡ F (a))k¡3[(k ¡ 1)F (a)¡ 1]F 0

(a)da

+(k ¡ 1)(
Z 1

c¤

1

a
(1¡ F (a))k¡3[(k ¡ 1)F (a)¡ 1]F 0

(a)da

< (k ¡ 1)
Z 1

m
(1¡ F (a))k¡3[(k ¡ 1)F (a)¡ 1]F 0

(a)da

The last inequality follows by noting that the integrand in the …rst integral

is negative and that the integrand in the second integral is positive. Thus, if

we multiply both integrands by the increasing function h(a) = a we strictly

increase the value of the sum of the two integrals. In order to prove that

B(m) < 0 it is then enough to prove that
R 1
m(1 ¡ F (a))k¡3[(k ¡ 1)F (a) ¡

1]F
0
(a)da = 0: By the change of variable z = F (a);we obtain

Z 1

m
(1¡ F (a))k¡3[(k ¡ 1)F (a)¡ 1]F 0

(a)da

=
Z 1

0
(1¡ z)k¡3[(k ¡ 1)z ¡ 1]dz = 0

6. This follows by combining all properties above.

7. We know that B(c)¡A(c) > 0 for all c 2 [m; c¤¤) and that B(c)¡A(c) < 0
for all c 2 (c¤¤; 1): This yields:
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Z 1

m
(B(c)¡A(c))F 0(c)dc

=
Z c¤¤

m
(B(c)¡A(c))F 0(c)dc+

Z 1

c¤¤
(B(c)¡A(c))F 0(c)dc

= (k ¡ 1)
Z c¤¤

m
[
Z 1

c

(1¡ F (a))k¡3
a

(kF (a)¡ 2)F 0(a)da]F 0(c)dc+

(k ¡ 1)
Z 1

c¤¤
[
Z 1

c

(1¡ F (a))k¡3
a

(kF (a)¡ 2)F 0(a)da]F 0(c)dc

< (k ¡ 1) 1
c¤¤

Z c¤¤

m
[
Z 1

c
(1¡ F (a))k¡3(kF (a)¡ 2)F 0(a)da]F 0(c)dc+

(k ¡ 1) 1
c¤¤

Z 1

c¤¤
[
Z 1

c
(1¡ F (a))k¡3(kF (a)¡ 2)F 0(a)da]F 0(c)dc

= (k ¡ 1) 1
c¤¤

Z 1

m
[
Z 1

c
(1¡ F (a))k¡3(kF (a)¡ 2)F 0(a)da]F 0(c)dc

=
1

c¤¤

Z 1

0
[
Z 1

v
(k ¡ 1)(1¡ z)k¡3(kz ¡ 2)dz]dv = 0

The last equality follows by the changes of variables F (a) = z and F (c) = v.

Proof of Proposition 4.1: As in the proof of Proposition 3.1, player i’s

maximization problem reads:

maxx[V1(1¡ F (b¡1(x)))k¡1 + (k ¡ 1)V2F (b¡1(x))(1¡ F (b¡1(x)))k¡2 ¡ c°(x)]

Letting y denote the inverse of b; the …rst order condition is:

°0(x) = ¡(k ¡ 1)(V1 ¡ V2)y0 1
y
(1¡ F (y))k¡2F 0(y)¡

(k ¡ 1)(k ¡ 2)V2y0 1
y
F (y)(1¡ F (y))k¡3F 0(y)

Integration and the use of the boundary condition y(1) = 0 yield °(x) = G(y),

where G(y) is de…ned exactly as in the proof of Proposition 3.1 (see equation 8.1)

Hence, x = °¡1(G(y)) = g(G(b¡1(x))) and b = g(G): The candidate equilibrium

bid function b(c) = g(A(c)V1 + B(c)V2) is strictly decreasing since, for all c 2
[m; 1); it holds:
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dg

dc
(A(c)V1 +B(c)V2)

= g0(A(c)V1 +B(c)V2) ¢ (A0(c)V1 +B0(c)V2) < 0

The last inequality follows because g0 > 0 by assumption, while A0(c)V1 +

B0(c)V2 < 0 since this is the derivative of the bid function with linear cost functions

(see proof of Proposition 3.1). For the su¢cient second-order condition we proceed

exactly as in the proof of Proposition 3.1.

The equilibrium bid for p > 2 prizes , and k ¸ p contestants with cost functions
of the form c°(x) is given by b(c) = °¡1(

Pp
s=1 Vs ¢

R 1
c ¡ 1

a
F

0
s(a)da); where the F

0
s(a)

are given in formulas 8.3 and 8.4.

Proofs of Propositions 4.2 and 4.3: Recall that the designer’s revenue as

a function of the value of the second prize is:

R(®) = k
Z 1

m
g[A(c) + ®(B(c)¡A(c))]F 0(c)dc (8.6)

Note that

R0(®) = k
Z 1

m
(B(c)¡ A(c))g0[A(c) + ®(B(c)¡A(c))]F 0(c)dc (8.7)

and that:

R00(®) = k
Z 1

m
(B(c)¡A(c))2g00[A(c) + ®(B(c)¡ A(c))]F 0(c)dc (8.8)

Observe also that

dg0[A(c) + ®(B(c)¡A(c))]
dc

= g00[A(c) + ®(B(c)¡A(c))] (8.9)

¢[(1¡ ®)A0(c) + ®B0(c)]
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and that

(1¡ ®)A0(c) + ®B0(c) < 0 (8.10)

since this last term is the derivative of the equilibrium bid function for contestants

having linear cost functions.

Concave cost functions: The cost function of contestant i with ability c,

c°; has the additional feature that °00 · 0: Hence g00 = (°¡1)00 ¸ 0: By equations
8.9 and 8.10 we obtain that the positive function g0[A(c) + ®(B(c) ¡ A(c))] is
decreasing in c. By Lemma 8.1, there exists a unique point c¤¤ 6= 1 such that

B(c) < A(c) for all c 2 [m; c¤¤) and B(c) > A(c) for all c 2 (c¤¤; 1]: This means
that in the integral de…ning R0(®); all negative terms of the form B(c)¡A(c) are
multiplied by relatively high values of g0 , while all positive terms B(c)¡A(c) are
multiplied by relatively lower values. By Lemma 8.1-7, we obtain:

R0(®) = k
Z 1

m
g0[A(c) + ®(B(c)¡A(c))](B(c)¡ A(c))F 0(c)dc < 0 (8.11)

Hence, the designer’s payo¤ function has a maximum at ® = 0; and a single

prize is optimal.

Convex cost functions: The cost function c° has the additional feature

that °00 ¸ 0: Hence g00 = (°¡1)00 · 0: By equations 8.9 and 8.10 we obtain that

the positive function g0[A(c) + ®(B(c) ¡ A(c))] is increasing in c. This means
that in the integral de…ning R0(®) all negative terms of the form B(c)¡A(c) are
multiplied by relatively low values of g0, while all positive terms B(c)¡ A(c) are
multiplied by higher values. Moreover, for all ® 2 [0; 1

2
] we have

R00(®) = k
Z 1

m
(B(c)¡ A(c))2g00[A(c) + ®(B(c)¡A(c))]F 0(c)dc · 0

If condition 4.1 is satis…ed we have then:
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R0(0) = k
Z 1

m
((B(c)¡ A(c))g0(A(c))F 0(c)dc > 0 (8.12)

Hence, the revenue function R(®) cannot have a maximum at ® = 0: It either

has a maximum at ®¤ such that R
0
(®¤) = 0 or at ® = 1

2
:

For the converse, assume that two prizes are optimal. This means that ® = 0

is not a maximum of R(®). If condition 4.1 is not satis…ed we obtain R0(0) · 0.
Together with R00(®) · 0 for all ® 2 [0; 1

2
] we obtain a contradiction.
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